# Topcon 3D OCT-1 Maestro / 3D OCT-1 Maestro2 **REFERENCE DATABASE**





### Introduction

Optical coherence tomography (OCT) is a noninvasive technique for high-resolution, cross-sectional topographic imaging of tissue by measuring backscattered light.

Glaucoma is a socially critical disease that is a major cause of blindness internationally across many different ethnic groups and ages. According to 2002 WHO statistics, glaucoma is the second leading cause of blindness worldwide<sup>1</sup>, and according to a detailed glaucoma epidemiology survey<sup>2</sup> made in the period of 2000 to 2002, the prevalence of glaucoma for people of 40 years old or above was an estimated 5.0 percent, and in some ethnic populations even higher.<sup>3</sup> Optic nerve and field disorders are basically progressive and non-reversible. With glaucoma, the disorder gradually progresses without the subject noticing the disease symptoms. Inhibition or suppression of progress of the disorder by the early detection and early therapy is therefore an important challenge. In the diagnosis of glaucoma, detection of the morphological change in the optic disc or retinal nerve fiber layer thickness is quite important. Findings of the optic disc or retina nerve fiber layer disorder relates to the stage of glaucoma, although such disorder is often detected prior to detection of a visual field loss during an ophthalmology examination. An experienced clinician may effectively observe the fundus oculi of subjects and diagnose glaucoma; however, evaluation of the fundus oculi differs between different clinicians, so that a standardized method for evaluation and decision is desired.

Diabetic retinopathy, a retinal vascular disorder that occurs as a complication of diabetes mellitus (DM), is a leading cause of blindness in the United States, often affecting working-aged adults.<sup>4</sup> Approximately 4.1 million US adults 40 years and older have diabetic retinopathy;1 of every 12 persons with DM in this age group has advanced, vision threatening retinopathy.<sup>5</sup> The Hoorn Study suggests that not only patients with type 2 DM, but elderly individuals with normal glucose metabolism or an impaired glucose metabolism have a substantial risk of developing retinopathy.<sup>6</sup> Age-related macular degeneration (AMD) is the leading cause of blindness among European descended people older than 65 years. Age-related macular degeneration affects more than 1.75 million individuals in the United States. Owing to the rapid aging of the US population, this number<sup>7</sup> will increase to almost 3 million by 2020.<sup>8</sup>

In particular, while age-related macular degeneration has not conventionally found effective therapeutic measures, Visudyne<sup>\*</sup> photodynamic therapy and intravitreal drugs such as Lucentis<sup>\*</sup> are now available for early detection and treatment options, which in effect will minimize a decline in visual acuity with early diagnoses. It is conceivable that the thickness (or volume) of the retina at the macula can be utilized for early detection of the disorders such as age-related macular degeneration and diabetic retinopathy and follow disease progression and efficacy of the treatment given by the physician.

Topcon provides the 3D OCT-1 Maestro with a Reference Database for the purpose of comparing retinal nerve fiber layer (RNFL), macular thickness ganglion cell layer (GCL) + inner plexiform layer (IPL) and GCL + IPL + RNFL of a subject to a known database of normal individuals, and it serves as a comparison against which measured individual values fall in which under exactly the same scanning pattern. The Reference Database is used to set cut-offs based on the statistical distribution of the eyes in the study. The measured value is considered abnormal or normal according to where the value falls in standard distribution.

• Each subject underwent a complete ophthalmic examination. To be classified as a "Normal Eye" for inclusion in the Reference Database the

subject must have met all of the following criteria:

- a. BSCVA of 20/40 or better
- b. Intraocular pressure  $\leq 21 \text{ mm}$  Hg bilaterally
- c. Both eyes must be free of eye disease d. Absence of any of the following conditions or medical history:
- i. Presence of any ocular pathology except for cataract
- ii. Narrow angle glaucoma
- iii. History of leukemia, dementia or multiple sclerosis
  iv. Concomitant use of hydroxychloroguine and chloroguine
- OCT scans were performed as per the instrument user manual. Image was then automatically segmented and each image was verified as per the user manual for scan acceptability

The data was collected and statistically analyzed and then submitted to the FDA as part of the 3D OCT-1 Maestro 510K submission for clearance in the United States, K161509.

### **Institutional Setting**

Sites included in the Reference Database were (in alphabetical order):

- Illinois Eye Institute / Illinois College of Optometry
- Jarnagin Primary Eye Care Service / Marshall B. Ketchum University
- New York Veterans Association (VA NY), St Albans
  Community Living Center
- SUNY College of Optometry
- UAB The University of Alabama, Birmingham
- Valley EyeCare Center
- Western University of Health Sciences

# **Summary of Database**

Enrollment numbers incorporated in this Reference Database are described by scan pattern, age, sex and ethnicity in Table 1, Figure 1 and Figure 2 below.

# **OCT Scan Patterns**

The 12mm x 9mm wide scan pattern and the 6mm x 6mm macula scan pattern were analyzed by 6 sectors, 12 sectors, by 9 sector Early Treatment of Diabetic Retinopathy Study (ETDRS) grid and by the Super Pixel Grid.

The 6mm x 6mm disc scan pattern was analyzed by average RNFL over the TSNIT circle (3.45 mm diameter circle centered on disc), the 4 sectors around the TSNIT circle and by 12 sectors around the TSNIT circle, and by the Super Pixel Grid.

The Super Pixel Grid is made up of the Small and Large Super Pixel Grid. The Small Pixel Grid is made up of 60 x 45 square grids, each 200 microns x 200 microns in size providing 2,700 total grid squares. The Large Pixel Grid is made up of 12x9 square grids, each 1mm x 1mm in size providing 108 total grid squares.



Figure 1. Ethnicity Plot



Figure 2. Age Plot

|        | Group       | n    |
|--------|-------------|------|
|        | 18-30 years | 89   |
|        | 31-40years  | 76   |
|        | 41-50years  | 66   |
|        | 51-60years  | 78   |
|        | 61-70years  | 55   |
| Age    | 70+ years   | 35   |
|        | Average     | 46.3 |
|        | SD          | 16.3 |
|        | Min         | 18   |
|        | Max         | 88   |
| Candan | Female      | 226  |
| Gender | Male        | 173  |

Table 1. Enrollment by Age Group and Gender

|                               | 12mm x 9mm<br>3D wide | 6mm x 6mm<br>3D macula | 6mm x 6mm<br>3D Disc |
|-------------------------------|-----------------------|------------------------|----------------------|
| Full Retinal Thickness        | 0                     | 0                      |                      |
| Ganglion cell + IPL Thickness | 0                     | 0                      |                      |
| GCL + IPL + RNFL Thickness    | 0                     | 0                      |                      |
| RNFL Thickness                | 0                     |                        | 0                    |
| TSNIT Circle profile          | 0                     |                        | 0                    |
| Optic Disc                    | 0                     |                        | 0                    |
| Super pixel grid              | 0                     | 0                      | 0                    |

Table 2. Scan Patterns

# **RNFL** Thickness

Median, Mean and Standard Deviation (4 Sector) *Table 3* presents the descriptive statistics of the retinal nerve fiber layer (RNFL) thickness of the full analysis population (Figure 3a). *Figures 3b and 3c* display the regression lines for the 1st, 5th, 95th and 99th percentile reference limits by age for the RNFL thickness (quadrant) at the average disc area from the Maestro 12x9 3D Wide and the 6x6 3D Disc, respectively.

| Scan Patte | rn      | т      | s     | N      | I      | Total   |
|------------|---------|--------|-------|--------|--------|---------|
|            | N       | 398    | 398   | 398    | 398    | 398     |
|            | Median  | 76.13  | 128.9 | 79.41  | 134.8  | 105.225 |
| 12mm x     | Mean    | 76.639 | 125.5 | 80.569 | 136.27 | 104.72  |
| 9mm        | SD      | 12.179 | 18.61 | 16.333 | 17.415 | 11.829  |
|            | CI 95%  | 75.439 | 123.7 | 78.96  | 134.85 | 103.555 |
|            |         | 77.84  | 127.3 | 82.179 | 138.28 | 105.886 |
|            | N       | 398    | 398   | 398    | 398    | 398     |
|            | Median  | 73.435 | 126.3 | 78.345 | 134.8  | 103.99  |
| 6mm x      | Mean    | 73.528 | 126.7 | 79.499 | 136.56 | 104.036 |
| 6mm        | SD      | 11.812 | 17.77 | 16.461 | 17.415 | 11.341  |
|            | CL 0.5% | 72.364 | 124.9 | 77.877 | 134.82 | 102.918 |
|            | CI 95%  | 74.692 | 128.4 | 81.121 | 138.28 | 105.153 |

Table 3. RNFL Thickness-Mean (mm)



Figure 3a. RNFL Thickness







Figure 3c.

# Peripapillary RNFL Thickness Median, Mean and Standard Deviation (12 Sector)

Table 4 presents the descriptive statistics of the retinal nerve fiber layer (RNFL) thickness of the full analysis population (Figure 4a).

Figures 4b and 4c display the regression lines for the 1st, 5th, 95th and 99th percentile reference limits by age for the RNFL thickness (clock hour) at the average disc area from the Maestro 12x9 3D Wide and the 6x6 3D Disc, respectively.

|              |         |        |        |         | ·       |         |        | ,      |        |         |         |         |        |
|--------------|---------|--------|--------|---------|---------|---------|--------|--------|--------|---------|---------|---------|--------|
| Scan Pattern |         | т      | TS     | ST      | s       | SN      | NS     | N      | NI     | IN      | L       | іт      | ті     |
|              | N       | 398    | 398    | 398     | 398     | 398     | 398    | 398    | 398    | 398     | 398     | 398     | 398    |
|              | Median  | 63.745 | 90.53  | 136.945 | 122.6   | 117.575 | 94.88  | 65.79  | 77.78  | 114.795 | 150.15  | 141.18  | 72.505 |
| 12mm x 9mm   | Mean    | 64.291 | 91.514 | 136.128 | 123.754 | 116.576 | 95.981 | 66.712 | 78.999 | 116.127 | 151.229 | 141.11  | 74.127 |
|              | SD      | 9.356  | 17.142 | 23.813  | 28.027  | 24.568  | 22.084 | 13.799 | 19.237 | 25.824  | 28.446  | 23.613  | 15.135 |
|              | CI 95%  | 63.369 | 89.825 | 133.782 | 120.993 | 114.155 | 93.804 | 65.353 | 77.103 | 113.582 | 148.425 | 138.783 | 72.635 |
|              |         | 65.213 | 93.203 | 138.475 | 126.516 | 118.997 | 98.157 | 68.072 | 80.895 | 118.672 | 154.032 | 143.437 | 75.618 |
|              | N       | 398    | 398    | 398     | 398     | 398     | 398    | 398    | 398    | 398     | 398     | 398     | 398    |
|              | Median  | 60.6   | 86.965 | 137.72  | 125.955 | 117.905 | 95.67  | 63.67  | 75.35  | 114.62  | 150.035 | 141.455 | 69.62  |
| 6mm × 6mm    | Mean    | 61.309 | 87.965 | 136.062 | 126.323 | 117.526 | 96.561 | 64.953 | 76.993 | 116.055 | 151.966 | 141.277 | 71.313 |
| 6mm x 6mm    | SD      | 9.142  | 16.359 | 24.304  | 27.583  | 23.88   | 22.255 | 13.785 | 19.399 | 25.303  | 27.748  | 24.428  | 14.74  |
|              | CI 95%  | 60.408 | 86.353 | 133.667 | 123.605 | 115.172 | 94.368 | 63.595 | 75.082 | 113.562 | 149.231 | 138.87  | 69.86  |
|              | CI 33/0 | 62.21  | 89.577 | 138.457 | 120.041 | 119.879 | 98.754 | 66.311 | 78.905 | 118.549 | 154.7   | 143.685 | 72.766 |

Table 4. RNFL Thickness



Figure 4a.



RNFL THICKNESS (CLOCK HOUR) AT AVERAGE DISC AREA BY AGE - MAESTRO (12X9 3D WIDE) - REFERENCE LIMITS



RNFL THICKNESS (CLOCK HOUR) AT AVERAGE DISC AREA BY AGE -MAESTRO ( 6X6 DISC) - REFERENCE LIMITS

# Macular 3D Retinal Median, Mean and Standard Deviation (ETDRS)

Table 5 presents the descriptive statistics of the full retinal thickness in the full analysis population. 395 of the 399 subjects in the full analysis population had scans available for measurements. Four patients were excluded from this analysis, as all of their scans were determined to be unacceptable by the Reading Center.

Figures 5b and 5c display the regression lines for the 1st, 5th, 95th and 99th percentile reference limits by age for the full retinal thickness from the Maestro 12x9 3D Wide and the 6x6 3D Disc, respectively.

| Scan Pattern |        | Center<br>Fovea | Superior<br>Parafoveal | Nasal<br>Parafoveal | Inferior<br>Parafoveal | Temporal<br>Parafoveal | Superior<br>Perifoveal | Nasal<br>Perifoveal | Inferior<br>Perifoveal | Temporal<br>Perifoveal |
|--------------|--------|-----------------|------------------------|---------------------|------------------------|------------------------|------------------------|---------------------|------------------------|------------------------|
|              | N      | 395             | 395                    | 395                 | 395                    | 395                    | 395                    | 395                 | 395                    | 395                    |
|              | Median | 235.52          | 308.28                 | 309.56              | 306.92                 | 297.74                 | 270.05                 | 284.75              | 257.86                 | 255.8                  |
|              | Mean   | 237.079         | 308.138                | 309.494             | 306.13                 | 297.548                | 269.009                | 284.588             | 257.721                | 255.347                |
| 12mm x 9mm   | SD     | 20.889          | 15.96                  | 16.311              | 15.985                 | 15.296                 | 14.968                 | 16.447              | 14.601                 | 13.906                 |
|              | CI 95% | 235.012         | 306.56                 | 307.88              | 304.549                | 296.035                | 267.528                | 282.961             | 256.276                | 253.971                |
|              |        | 239.146         | 309.717                | 311.107             | 307.712                | 299.061                | 270.489                | 286.215             | 259.165                | 256.722                |
|              | N      | 395             | 395                    | 395                 | 395                    | 395                    | 395                    | 395                 | 395                    | 395                    |
|              | Median | 232.29          | 308.98                 | 309.08              | 305.78                 | 296.75                 | 269.75                 | 284.21              | 258.07                 | 253.4                  |
| 6 mm x 6 mm  | Mean   | 234             | 308.985                | 309.335             | 305.732                | 296.593                | 269.505                | 284.153             | 258.579                | 252.926                |
| omm x omm    | SD     | 20.657          | 16.192                 | 16.685              | 16.322                 | 16.625                 | 15.165                 | 16.423              | 14.909                 | 13.94                  |
|              | CL 05% | 231.956         | 307.383                | 307.685             | 304.117                | 295.047                | 268.005                | 282.529             | 257.105                | 251.547                |
|              | CI 95% | 236.043         | 310.587                | 310.986             | 307.346                | 298.139                | 271.006                | 285.778             | 260.054                | 254.305                |

Table 5. Full Retinal Thickness



Figure 5a. Full Retinal Thickness



Figure 5b.

Figure 5c.

# **Ganglion Cell Analysis**

Reference data for the study population was collected for the following parameters associated with the ganglion cell thickness (see Figure 6a):

- 1. Superior thickness (1-6mm diameter circle)
- 2. Superior nasal thickness (1-6mm diameter circle)
- 3. Superior temporal thickness (1-6mm diameter circle)
- 4. Inferior thickness (1-6mm diameter circle)
- 5. Inferior nasal thickness (1-6mm diameter circle)
- 6. Inferior temporal thickness (1-6mm diameter circle)
- 7. Average thickness (1-6mm diameter circle)



Figure 6a. GCL-Macula 6 Sector Grid

| Scan Pattern     |        | s      | SN     | ST     | I      | IN     | ІТ     | AVER   |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | N      | 398    | 398    | 398    | 398    | 398    | 398    | 398    |
|                  | Median | 70.305 | 74.73  | 71.3   | 66.975 | 73.305 | 72.135 | 71.45  |
| 12               | Mean   | 70.063 | 74.469 | 70.991 | 67.305 | 72.994 | 73.322 | 71.363 |
| 1211111 X 911111 | SD     | 6.149  | 6.566  | 6.296  | 5.863  | 6.459  | 6.192  | 5.924  |
|                  | CI 95% | 69.457 | 73.822 | 70.371 | 66.728 | 72.357 | 71.712 | 70.779 |
|                  |        | 70.669 | 75.116 | 71.612 | 67.883 | 73.63  | 72.932 | 71.946 |
|                  | N      | 397    | 397    | 397    | 397    | 397    | 397    | 397    |
|                  | Median | 70.42  | 74.8   | 71.68  | 67.81  | 73.36  | 72.28  | 71.7   |
|                  | Mean   | 70.394 | 74.521 | 71.475 | 68.19  | 73.124 | 72.525 | 71.726 |
| өтт х өтт        | SD     | 6.224  | 6.506  | 5.924  | 6.139  | 6.515  | 6.01   | 5.88   |
|                  | CL 05% | 69.78  | 73.879 | 70.891 | 67.585 | 73.481 | 71.932 | 71.146 |
|                  | CI 95% | 71.008 | 75.163 | 72.06  | 68.796 | 73.767 | 73.118 | 72.306 |

Table 6.



Table 6 presents the descriptive statistics of the ganglion cell + IPL thickness of the full analysis population (Figure 6).

Table 7 presents the descriptive statistics of the ganglion cell complex thickness of the full analysis population (Figure 7a).

| Scan Pattern     |        | s       | SN      | ST     | I       | IN      | ІТ     | AVER    |
|------------------|--------|---------|---------|--------|---------|---------|--------|---------|
|                  | N      | 398     | 398     | 398    | 398     | 398     | 398    | 398     |
|                  | Median | 105.705 | 116.55  | 94.08  | 104.465 | 116.98  | 97     | 105.85  |
| 12mm × 0mm       | Mean   | 105.74  | 116.728 | 93.828 | 104.669 | 117.43  | 96.708 | 105.949 |
| 1211111 X 911111 | SD     | 8.944   | 10.002  | 7.298  | 8.791   | 10.999  | 96.708 | 8.533   |
|                  | CI 95% | 104.858 | 115.742 | 93.109 | 103.802 | 116.346 | 95.991 | 105.108 |
|                  |        | 106.621 | 117.714 | 94.547 | 105.535 | 118.514 | 97.424 | 106.789 |
|                  | N      | 397     | 397     | 397    | 397     | 397     | 397    | 397     |
|                  | Median | 106.72  | 117.15  | 93.43  | 105.67  | 117.49  | 96.29  | 105.8   |
|                  | Mean   | 106.698 | 116.85  | 93.331 | 105.702 | 117.971 | 96.254 | 106.268 |
| 6mm х 6mm        | SD     | 9.094   | 9.915   | 7.314  | 9.079   | 10.966  | 7.361  | 8.602   |
|                  | CL 05% | 105.801 | 115.871 | 92.609 | 104.806 | 116.889 | 95.528 | 105.419 |
|                  | CI 95% | 107.595 | 117.828 | 94.052 | 106.597 | 119.053 | 96.981 | 107.116 |

Table 7.





# **Ganglion Cell Analysis**

Figures 6b and 6c display the regression lines for the 1st, 5th, 95th and 99th percentile reference limits by age for ganglion cell + IPL thickness from the Maestro 12x9 3D Wide and the 6x6 3D Macula, respectively.

Figures 7b and 7c display the regression lines for the 1st, 5th, 95th and 99th percentile reference limits by age for the ganglion cell complex thickness from the Maestro 12x9 3D Wide and the 6x6 3D Macula, respectively.









Figure 6c.

Figure 7c.

# **Disc Segmentation Analysis**

Table 8 presents the descriptive statistics of the optic disc of the full analysis population.

Figures 8a and 8b display the regression lines for the 1st, 5th, 95th and 99th percentile reference limits of the optic disc at average disc area by age from the Maestro 12x9 3D Wide and the 6x6 3D Disc, respectively.

| Scan Pattern     |         | C/D   | C/D   | Disc  | Cup   | Rim   | Cup Vol | Rim Vol |
|------------------|---------|-------|-------|-------|-------|-------|---------|---------|
|                  | N       | 398   | 398   | 398   | 398   | 398   | 398     | 398     |
|                  | Median  | 0.52  | 0.26  | 2.23  | 0.57  | 1.58  | 0.08    | 0.26    |
| 12mm × 0mm       | Mean    | 0.489 | 0.278 | 2.264 | 0.655 | 1.608 | 0.127   | 0.287   |
| 1211111 X 911111 | SD      | 0.2   | 0.179 | 0.409 | 0.485 | 0.415 | 0.143   | 0.153   |
|                  | CI 95%  | 0.469 | 0.261 | 2.223 | 0.608 | 1.568 | 0.112   | 0.272   |
|                  |         | 0.508 | 0.296 | 2.304 | 0.703 | 1.649 | 0.141   | 0.302   |
|                  | N       | 398   | 398   | 398   | 398   | 398   | 398     | 398     |
|                  | Median  | 0.51  | 0.27  | 2.065 | 0.545 | 1.46  | 0.08    | 0.24    |
|                  | Mean    | 0.48  | 0.28  | 2.102 | 0.613 | 1.489 | 0.125   | 0.264   |
| ъmm х ъmm        | SD      | 0.19  | 0.169 | 0.414 | 0.432 | 0.383 | 0.135   | 0.14    |
|                  | CL 0.5% | 0.462 | 0.263 | 2.061 | 0.57  | 1.452 | 0.112   | 0.25    |
|                  | CI 95%  | 0.499 | 0.297 | 2.142 | 0.655 | 1.527 | 0.139   | 0.278   |

Table 8



Optic Disc At Average Disc Area By Age - Maestro (12x9 3D Wide) - Reference Limits

#### Figure 8a.



Figure 8b.

#### Summary

Topcon has incorporated a Reference Database into the Topcon 3D OCT-1 Maestro instrument. This age stratified Reference Database is comprised of several ethnicities all collected in the United States. These data were submitted to the FDA as per the 3D OCT-1 Maestro 510K submission.

### References

- 1. Resnikoff et al, Bulletin of the World Health Organization, November 2004, p.844-851
- 2. Yamamoto, et al. The Tajimi Study Report 2 Prevalence of Primary Angle Closure and Secondary Glaucoma in a Japanese Population. Ophthalmology, Volume 112, Issue 10, Pages 1661 -1669
- 3. Friedman DS, Wolfs RC, O'Colmain BJ, et al. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122:532-8
- American Academy of Ophthalmology. Preferred Practice Pattern: Diabetic Retinopathy. San Francisco, Calif: American Academy of Ophthalmology; 1998
- 5. Kempen, Friedman DS, et el. Prevelance of Diabetic Retinopathy in the United States. Arch Ophthalmol. 2004;122:552-563
- 6. Van Leiden, H., Dekker, et el. Risk Factors for Incident Retinopathy in a Diabetic and Non diabetic Population. Arch Ophthalmol. 2003;121:245-251
- Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 1998;116:653-658
- Friedman DS, Wolfs RC, O'Colmain BJ, et al. Prevalence of Age-Related Macular Degeneration in the United States. Arch Ophthalmol. 2004;122:564-572

