TABLE OF CONTENTS

Model Number Chart.. 1
Introduction .. 1
Safety Information & Instructions .. 2
Special Information .. 3
Rotation .. 3
Circulation Lines ... 3
Jacketed Ports .. 3
EC1935 Certification .. 3
Maintenance ... 3
Lubrication .. 3
Cleaning Pump .. 3
Storage ... 3
Suggested Repair Tools .. 3
Removal: O-Pro™ Barrier Seal .. 5
Installation: O-Pro™ Barrier Seal .. 5
Pump Disassembly ... 6
Pump Assembly .. 7
Thrust Bearing Adjustment ... 8
Installation: Hardened Iron Idler Bushing............................... 9
Spacer Coupling Lengths .. 9
APPENDIX (Formerly TSM 000) ... 9
General Installation Notes .. 9
Foundation .. 11
Component & Unit Lifting Features 11
Alignment ... 12
Piping ... 13
Start Up ... 14
Troubleshooting ... 14
Vacuum Gauge - Suction Port... 14
Pressure Gauge - Discharge Port .. 15
Rapid Wear ... 16
Preventative Maintenance .. 16
Do’s & Don’ts .. 17
Installation ... 17
Operation .. 17
Maintenance .. 17
ESB-515 ... 18
Lubrication of Viking Pumps ... 18
Lubrication of Viking Reducers .. 18
Lubrication of Viking Associative Equipment 18
Declaration of Conformity ... 19

MODEL NUMBER CHART

JACKETED O-PRO™ BARRIER SEAL

<table>
<thead>
<tr>
<th>Grooved Casing</th>
<th>Standard Casing</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1224A-CHC1</td>
<td>H1224A-CHC2</td>
</tr>
<tr>
<td>HL1224A-CHC1</td>
<td>HL1224A-CHC2</td>
</tr>
<tr>
<td>K1224A-CHC1</td>
<td>K1224A-CHC2</td>
</tr>
<tr>
<td>KK1224A-CHC1</td>
<td>KK1224A-CHC2</td>
</tr>
<tr>
<td>LQ1224A-CHC1</td>
<td>LQ1224A-CHC2</td>
</tr>
<tr>
<td>LL1224A-CHC1</td>
<td>LL1224A-CHC2</td>
</tr>
<tr>
<td>LS1224A-CHC1</td>
<td>LS1224A-CHC2</td>
</tr>
<tr>
<td>Q1224A-CHC1</td>
<td>Q1224A-CHC2</td>
</tr>
<tr>
<td>QS1224A-CHC1</td>
<td>QS1224A-CHC2</td>
</tr>
</tbody>
</table>

INTRODUCTION

The illustrations used in this manual are for identification purposes only and cannot be used for ordering parts. Obtain a parts list from a Viking Pump® representative. Always give a complete name of part, part number and material with the model number and serial number of pump when ordering repair parts. The unmounted pump or pump unit model number and serial number are on the nameplate. This manual only applies to the pump models specified in the “Model Number Chart” on page 1. Pump specifications and recommendations are listed in AD-23, which is available at vikingpump.com.

Viking Pump 1224A-CHC Series™ pumps are designed specifically for handling chocolate and related confectionery processes. These pumps are suitable for low hazard foods like chocolate according to each facility’s HACCP plan. They are not a hygienic design according to 3A or FDA, and are not suitable for services requiring CIP or COP.
SAFETY INFORMATION & INSTRUCTIONS

IMPROPER INSTALLATION, OPERATION OR MAINTENANCE OF PUMP MAY CAUSE SERIOUS INJURY OR DEATH, AND/OR RESULT IN DAMAGE TO PUMP AND/OR OTHER EQUIPMENT. VIKING'S WARRANTY DOES NOT COVER FAILURE DUE TO IMPROPER INSTALLATION, OPERATION OR MAINTENANCE.

THE FOLLOWING SAFETY INSTRUCTIONS MUST BE FOLLOWED AND ADHERED TO AT ALL TIMES.

⚠️ DANGER = FAILURE TO FOLLOW THE INDICATED INSTRUCTION MAY RESULT IN SERIOUS INJURY OR DEATH.

⚠️ WARNING = IN ADDITION TO SERIOUS INJURY OR DEATH, FAILURE TO FOLLOW THE INDICATED INSTRUCTION MAY CAUSE DAMAGE TO PUMP AND/OR OTHER EQUIPMENT

⚠️ WARNING

INSTALL pressure gauges/sensors next to the pump suction and discharge connections to monitor pressures.

⚠️ WARNING

USE extreme caution when lifting the pump. Suitable lifting devices should be used when appropriate. Lifting eyes installed on the pump must be used only to lift the pump, not the pump with drive and/or base plate. If the pump is mounted on a base plate, the base plate must be used for all lifting purposes. If slings are used for lifting, they must be safely and securely attached. For weight of the pump alone (which does not include the drive and/or base plate) refer to the Viking Pump® product catalog.

⚠️ DANGER

DO NOT attempt to dismantle a pressure relief valve that has not had the spring pressure relieved or is mounted on a pump that is operating.

⚠️ WARNING

THE PUMP must be provided with pressure protection. This may be provided through a relief valve mounted directly on the pump, an in-line pressure relief valve, a torque limiting device, or a rupture disk. If pump rotation may be reversed during operation, pressure protection must be provided on both sides of pump. Relief valve adjusting screw caps must always point towards suction side of the pump. If pump rotation is reversed, position of the relief valve must be changed. Pressure relief valves cannot be used to control pump flow or regulate discharge pressure. For additional information, refer to Appendix, General Installation Notes, item 5 on Pressure Protection or contact your Viking Pump® representative for Engineering Service Bulletin ESB-31.

⚠️ WARNING

THE PUMP must be installed in a manner that allows safe access for routine maintenance and for inspection during operation to check for leakage and monitor pump operation.
SPECIAL INFORMATION

ROTATION
Viking pumps operate equally well in a clockwise or counter-clockwise rotation. Some constructions may require modifications, consult Viking Pump representative if unsure. Shaft rotation determines which port is suction and which is discharge. Suction port is where pumping elements (gear teeth) come out of mesh.

If pump rotation is reversed during operation, pressure protection must be provided on both sides of pump. Relief valve adjusting screw cap must always point towards suction side of pump. If pump rotation is reversed, remove pressure relief valve and turn end for end.

CIRCULATION LINES
This equipment (not utilized on all pumps) must be connected properly. Packed pumps typically have a flush line from packing chamber to discharge port. Mechanical seal pumps typically have a suckback line from seal chamber to suction port. If pump rotation is reversed, be sure circulation connections are connected to the suction or discharge port as noted above to avoid excessive leakage or damage to pump. If pump is handling heated product, be sure circulation line is insulated to assure continued flow.

JACKETED PORTS
Jackets are utilized to heat (or cool) the pump and liquid in the pump prior to startup. Not all pumps have ports for jacketing. Jacketing port locations vary by model.

EC1935 CERTIFICATION
EC1935/2004 is a European standard covering materials that come into contact with foods. It requires that food contact materials may not transfer substances to foods in quantities which represent a health risk to people, lead to an unacceptable change in the composition of the food, or adversely affect the organoleptic properties of the food. Viking 1224A-CHC Series™ pumps comply with this standard, and the EC1935 cup and fork logo is visible on the pump nameplate.

See back page for Declaration of Conformity.

MAINTENANCE

These pumps are designed for long, trouble-free service life under a wide variety of application conditions with minimum maintenance. The points listed below will help provide long service life.

LUBRICATION
External lubrication must be applied slowly with a hand gun to all lubrication fittings every 500 hours of operation with multi-purpose grease, NLGI # 2. Contact your Viking Pump® representative with specific lubrication questions. Engineering Service Bulletin ESB-515 is located in the Appendix for standard grease thickener types used by Viking to check compatibility. Applications involving very high or low temperatures will require other types of lubrication. Approximate grease capacity is 1.5 oz. on H, HL, K, KK, LQ, LL, LS and 3 oz. on the Q, QS sizes.

CLEANING PUMP
Keep pump as clean as possible. This will facilitate inspection, adjustment and repair work and help prevent overlooking a dirt covered grease fitting.

STORAGE
If pump is to be stored, or not used for six months or more, pump must be drained and a light coat of non-detergent light food grade oil must be applied to all internal pump parts. Lubricate fittings and apply food grade grease to pump shaft extension. Viking suggests rotating pump shaft by hand one complete revolution every 30 days to circulate the oil. Tighten all pump assembly bolts before putting pump in service after being stored.

SUGGESTED REPAIR TOOLS
The following tools must be available to properly repair these pumps. These tools are in addition to standard mechanics’ tools such as open-end wrenches, pliers, screwdrivers, etc. Most of the items can be obtained from an industrial supply house.

1. Soft Headed hammer
2. Allen wrenches (some mechanical seals and set collars)
3. O-Pro™ Barrier Seal installation sleeve
 2-751-002-730 for 1.125 inch seal; H-HL pumps
 2-751-003-730 for 1.4375 inch seal; K-LL pumps
 2-751-005-630 for 2.4375 inch seal; Q-QS pumps
 No sleeve needed for LS pumps
4. Bearing locknut spanner wrench
 Source: #471 J. H. Williams & Co. or equal; H-LL pumps
 Source: #472 J. H. Williams & Co. or equal; LS-QS pumps
5. Spanner wrench, adjustable pin type for use on bearing housing
 Source: #482 J. H. Williams & Co. or equal; H-QS pumps
 Supplied with pump; N-RS pumps
6. Brass or hardwood bar
7. Arbor press
FIGURE 5: EXPLODED VIEW (H, HL, K, KK, LQ, LL, LS SIZES)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name Of Part</th>
<th>Item</th>
<th>Name Of Part</th>
<th>Item</th>
<th>Name Of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locknut</td>
<td>17</td>
<td>O-Pro™ Barrier Seal Capscrew</td>
<td>30A</td>
<td>Pipe Plug</td>
</tr>
<tr>
<td>2</td>
<td>Lockwasher</td>
<td>18A</td>
<td>Inner Static O-Ring</td>
<td>35</td>
<td>Head Gasket</td>
</tr>
<tr>
<td>3</td>
<td>End Cap for Bearing Housing</td>
<td>18B</td>
<td>Outer Static O-Ring</td>
<td>36</td>
<td>Rotor and Shaft Assembly</td>
</tr>
<tr>
<td>4</td>
<td>Bearing Spacer Collar (Outer)</td>
<td>18C</td>
<td>O-Pro™ Barrier Seal</td>
<td>37</td>
<td>Idler and Bushing Assembly</td>
</tr>
<tr>
<td>5</td>
<td>Lip Seal for Bearing Housing</td>
<td>19</td>
<td>Pressure Relief Fitting</td>
<td>38</td>
<td>Bushing (part of 37)</td>
</tr>
<tr>
<td>6</td>
<td>Ball Bearing</td>
<td>26</td>
<td>Reducer Bushing (Not H, HL)</td>
<td>39</td>
<td>Idler Pin (part of 40)</td>
</tr>
<tr>
<td>7</td>
<td>Bearing Housing</td>
<td>26A</td>
<td>Capscrew for Bracket</td>
<td>40</td>
<td>Head and Idler Pin Assembly</td>
</tr>
<tr>
<td>8</td>
<td>Bearing Spacer Collar (Inner)</td>
<td>27</td>
<td>Bracket Gasket</td>
<td>41</td>
<td>Jacketed Head Plate Gasket</td>
</tr>
<tr>
<td>11</td>
<td>Half Round Ring (Not H, HL)</td>
<td>28</td>
<td>Capscrew for Bracket</td>
<td>42</td>
<td>Jacketed Head Plate</td>
</tr>
<tr>
<td>12</td>
<td>Grease Fitting</td>
<td>29</td>
<td>Bracket Gasket</td>
<td>43</td>
<td>Head Capscrews</td>
</tr>
<tr>
<td>16</td>
<td>O-Pro™ Barrier Seal Nut</td>
<td>30A</td>
<td>Pipe Plug</td>
<td>51</td>
<td>Stud for Flanges</td>
</tr>
</tbody>
</table>

FIGURE 6: EXPLODED VIEW (Q, QS SIZES)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name Of Part</th>
<th>Item</th>
<th>Name Of Part</th>
<th>Item</th>
<th>Name Of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locknut</td>
<td>18B</td>
<td>Inner Static O-Ring</td>
<td>35</td>
<td>Head Gasket</td>
</tr>
<tr>
<td>2</td>
<td>Lockwasher</td>
<td>18C</td>
<td>Outer Static O-Ring</td>
<td>36</td>
<td>Rotor and Shaft Assembly</td>
</tr>
<tr>
<td>3</td>
<td>End Cap for Bearing Housing</td>
<td>19</td>
<td>O-Pro™ Barrier Seal</td>
<td>37</td>
<td>Idler and Bushing Assembly</td>
</tr>
<tr>
<td>4</td>
<td>Bearing Spacer Collar (Outer)</td>
<td>26</td>
<td>Pressure Relief Fitting</td>
<td>39</td>
<td>Idler Pin (part of 40)</td>
</tr>
<tr>
<td>5</td>
<td>Lip Seal for Bearing Housing</td>
<td>26A</td>
<td>Reducer Bushing (Not H, HL)</td>
<td>40</td>
<td>Head and Idler Pin Assembly</td>
</tr>
<tr>
<td>6</td>
<td>Ball Bearing</td>
<td>27</td>
<td>Capscrew for Bracket</td>
<td>41</td>
<td>Jacketed Head Plate Gasket</td>
</tr>
<tr>
<td>7</td>
<td>Bearing Housing</td>
<td>28</td>
<td>Bracket Gasket</td>
<td>42</td>
<td>Jacketed Head Plate (not shown)</td>
</tr>
<tr>
<td>8</td>
<td>Bearing Spacer Collar (Inner)</td>
<td>29</td>
<td>Bracket Gasket</td>
<td>43</td>
<td>Head Capscrews</td>
</tr>
<tr>
<td>12</td>
<td>Grease Fitting</td>
<td>30</td>
<td>Pipe Plug</td>
<td>44</td>
<td>Nut for Head</td>
</tr>
<tr>
<td>16</td>
<td>O-Pro™ Barrier Seal Nut</td>
<td>30A</td>
<td>Pipe Plug</td>
<td>51</td>
<td>Stud for Flanges</td>
</tr>
<tr>
<td>17</td>
<td>O-Pro™ Barrier Seal Capscrew</td>
<td>31</td>
<td>Casing</td>
<td>52</td>
<td>Nut for Flanges</td>
</tr>
<tr>
<td>18A</td>
<td>Dynamic O-Ring</td>
<td>34</td>
<td>Pipe Flange Gasket</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DANGER!

Before opening any Viking pump liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure:

1. That any pressure in the chamber has been completely vented through the suction or discharge lines, or other appropriate openings or connections.

2. That the driving means (motor, turbine, engine, etc.) has been “locked out” or made non-operational, so that it cannot be started while work is being done on pump.

3. That you know what liquid the pump has been handling and the precautions necessary to safely handle the liquid. Obtain a material safety data sheet (MSDS) for the liquid to be sure these precautions are understood.

Failure to follow above listed precautionary measures may result in serious injury or death.

FIGURE 7:

Tapered Installation Sleeve

NOTE: Coat rotor shaft, tapered installation sleeve and inner diameter of O-Pro™ Barrier Seal with P-80® or equivalent before assembly.

FIGURE 8:

REMOVAL: O-PRO™ BARRIER SEAL

The O-Pro™ Barrier Seal was specially designed to that it could be removed and the food grade O-Rings replaced with minimal pump disassembly.

1. Insert length of hardwood or brass through port opening between rotor teeth to keep shaft from turning. Bend up tang of lockwasher and with a spanner wrench, remove locknut and lockwasher from shaft.

2. Loosen two set screws in the face of the bearing housing and remove the bearing housing assembly from the bracket. In order to remove the bearing housing and O-Pro™ Barrier Seal with the pump in place, Viking recommends using Spacer Couplings with at least a 4.75” gap for the H/HL size pumps, 6.25” gap for the K-KL size pumps, and a 7.75” gap for the QS/QS size pumps.

3. Remove the pair of half round rings (K, KK, L, LO, LL, and LS sizes only) under the inner spacer collar from the shaft.

4. Remove grease fitting and pipe plug from the O-Pro Barrier.

5. Loosen the gland nuts securing the O-Pro™ Barrier into the bracket and remove the T-bolts.

6. Thread the jack bolts into the tapped holes at the 6 and 12 o’clock position on the face of the O-Pro™ Barrier Seal. Remove the O-Pro™ Barrier through the bearing housing opening.

7. Clean as much old grease and product out of the area between the pump bracket bore and shaft as possible, taking care not to nick the finished surfaces.

If the pump is to be disassembled further, refer to “Pump Disassembly” on page 6.

INSTALLATION: O-PRO™ BARRIER SEAL

1. Lubricate the O-Rings and O-Pro™ Barrier thoroughly with food grade O-Ring lubricant or grease.

2. Install the inner dynamic O-Rings and the outer static O-Rings in the O-Ring grooves in the O-Pro™ Barrier.

3. Leaving the Rotor Shaft out of the pump, install the O-Pro™ Barrier Seal into the bracket. Make sure the flat surfaces face upwards. This positions the lubrication groove at the opposite end in the 6 o’clock position.

4. You will encounter resistance as the first outer static O-Ring enters the bushing bore area in the bracket. Rotate the O-Pro™ Barrier as needed, but do not hammer it or damage to the O-Rings may occur.

5. Once the O-Pro™ Barrier is far enough into the bracket bore, you can use the gland bolts to gently pull the O-Pro™ Barrier the rest of the way into the bracket bore.

6. Tighten both nuts on the gland bolts completely.

7. **NOTE:** Burrs left on the shaft can damage the inner dynamic O-Rings in the O-Pro™ Barrier Seal during installation. Inspect the shaft for burrs and remove any found with a fine grade of emery cloth.

8. Place tapered seal installation sleeve on shaft (H, HL, K, KK, LQ, LL, Q, and QS, no sleeve required for LS size). Coat the rotor shaft & installation sleeve with a generous amount of food grade grease.

9. Carefully insert the rotor shaft into the pump casing. Prevent the shaft keyway or threads from contacting the inner dynamic O-Rings. The shaft threads and keyway may be taped to ensure the O-Rings aren’t nicked by the shaft edges.

10. Remove the seal installation sleeve.

11. Reinstall the head with idler gear, using a new head gasket. Ensure that the crescent is opposite the sealing area between the ports.

12. Place pair of half round rings in groove on shaft (K, KK, LQ, LL, and LS sizes only) and turn bearing housing assembly into bracket.

13. Put lockwasher and locknut on shaft. Tighten locknut and bend one tang of lockwasher into slot of locknut.

© 2020 Viking Pump, Inc. • Cedar Falls, IA
PUMP DISASSEMBLY

1. Mark head and casing before disassembly to ensure proper reassembly. The idler pin, which is offset in pump head, must be positioned toward and equal distance between port connections to allow for proper flow of liquid through the pump.

Remove nuts and capscrews from head. The use of a hoist to support head will facilitate its removal. Avoid damaging head gasket. Back head slightly away from casing. Do not allow idler to fall from idler pin. To prevent this, tilt top of head back when removing. Remove head from pump. If a hoist is not available, cribbing or blocking can be used to support head. This will eliminate having to lift head into position when reassembling pump. The pump has jacketed head plate; it will separate from head when it is removed. The gasket between head and jacket head plate must be totally removed. Use new gasket when assembling pump.

2. Remove head gasket, idler and bushing assembly.

3. Insert a length of hardwood or brass through port opening between rotor teeth or lock coupling end of shaft to keep shaft from turning. Bend up tang of lockwasher and with a spanner wrench; remove locknut and lockwasher from shaft. Remove length of hardwood or brass from port opening.

4. Loosen the two setscrews in the face of the bearing housing and remove the bearing housing assembly from the bracket. See "Figure 9" on page 6.

5. Remove pair of half round rings under the inner spacer collar from the shaft for K, KK, LQ, LL, LS sizes only.

6. Remove pipe plug from drain hole in casing or bracket, breaking vacuum behind rotor.

NOTE: Refer to "Removal: O-Pro™ Barrier Seal" on page 5.

7. Carefully remove rotor and shaft and examine for shaft and rotor wear. Excessive wear at the O-Ring locations may require replacement of the rotor shaft to ensure a good seal.

8. Loosen two radial setscrews in flange of bearing housing and with a spanner wrench remove the outer end cap with lipseal and outer bearing spacer collar.

9. Remove the double row ball bearing; (2 tapered roller bearings on Q, QS, N, R, RS sizes), lipseal and inner bearing spacer collar from the bearing housing.

10. Clean all parts thoroughly and examine for wear and damage. Check lipseals, bearings, bushings, and idler pin and replace if necessary. Check all other parts for nicks, burrs, excessive wear and replace if necessary. Consult applicable Inspection Reports, available from your distributor. Wash bearings in clean solvent. Blow out bearings with compressed air. Do not allow bearings to spin; turn them slowly by hand. Spinning bearings will damage bearing components. Make sure bearings are clean, then lubricate with light oil and check for roughness. Roughness can be determined by turning outer race by hand.

FIGURE 9: BEARING HOUSING ASSEMBLY (H, HL)

11. Casing can be checked for wear or damage while mounted on bracket.

12. Inspect bracket bushing for wear and remove if damaged or worn.

Do not intermix inner and outer races of tapered roller bearing (Q, QS, N, R, RS sizes)

15. Install grease fitting into either hole of the O-Pro™ Barrier gland. Install pipe plug into the opposite hole.

16. If necessary, remove pipe plug to open hole in bracket for pressure relief fitting. Contact your Viking Pump® representative to obtain seal installation drawings for proper pressure relief fitting location. Install reducer bushing for pressure relief fitting into bracket (no reducer bushing for H & HL sizes).

17. Add grease through grease fitting in seal gland while rotating the pump shaft.

18. Fill until grease comes out of open hole in the bracket where pressure relief fitting will go.

19. Install pressure relief fitting in the bracket, apply additional grease to ensure all air pockets have been evacuated from the area and grease has exited relief fitting.

CAUTION!

Do not intermix inner and outer races of tapered roller bearing (Q, QS, N, R, RS sizes)

16. Fill until grease comes out of open hole in the bracket where pressure relief fitting will go.

19. Install pressure relief fitting in the bracket, apply additional grease to ensure all air pockets have been evacuated from the area and grease has exited relief fitting.

CAUTION!

Do not intermix inner and outer races of tapered roller bearing (Q, QS, N, R, RS sizes)

11. Casing can be checked for wear or damage while mounted on bracket.

12. Inspect bracket bushing for wear and remove if damaged or worn.

FIGURE 9: BEARING HOUSING ASSEMBLY (H, HL)

BEARING HOUSING

SETSCREWS

BALL BEARING

SPACER COLLAR

SHAFT

LOCKNUT & LOCKWASHER

END CAP

LIP SEALS
1. Install bracket on the casing if separated during assembly. Be sure gasket is placed between bracket and casing.

2. Coat shaft of rotor / shaft assembly with light oil. Start end of shaft in bracket bushing turning from right to left, slowly pushing rotor in casing.

3. Coat idler pin with light oil and place idler and bushing on idler pin in head. If replacing with drilled hardened iron idler bushing, Refer to "Installation: Hardened Iron Idler Bushing" on page 9.

4. Using a .010 to .015 inch thick head gasket, install head and idler assembly on pump. Pump head and casing should have been marked before disassembly to ensure proper reassembly. If not, be sure idler pin, which is offset in pump head, is positioned toward the equal distance between port connections to allow for proper flow of liquid through pump. Refer to "Figure 9" on page 6 or "Figure 10" on page 7 for bearing housing assembly.

5. Install the lipseal in the bearing housing (See "Figure 9" on page 6, "Figure 10" on page 7 or "Figure 11" on page 7 for lip orientation).

6. H, HL Sizes: Pack the ball bearing with grease and push or press the bearing into the bearing housing. See "Figure 9" on page 6.

 Q, QS Sizes: Pack tapered roller bearings with grease and press or push bearings into housing with large end of inner races together. It is possible to install bearings incorrectly. For proper assembly see "Figure 11" on page 7.

7. Install the lipseal in the end cap (see appropriate figure for lip orientation). Thread the end cap into the bearing housing along with outer bearing spacer collar and tighten against the bearing.

 Q, QS Sizes ONLY: Tapered roller bearings require preload to operate properly. To set preload tighten end cap so that inner races of bearings cannot be rotated by hand. Make a mark on the outside diameter of the bearing housing and a corresponding mark on the bearing housing end cap. Rotate the bearing housing end cap in a counter clockwise direction until the mark on the outside diameter of the bearing housing is past the mark on the bearing housing end cap by 0.375 in. (9.52mm) for the N bearing housing or 0.422 in. (10.72mm) for the R & RS bearing housings. This will provide the correct end play for the bearings.

 Lock end cap in place with two setscrews in the flange of the bearing housing.

 NOTE: Refer to "Installation: O-Pro™ Barrier Seal" on page 5.

8. Slide inner spacer collar over shaft with recessed end facing rotor. H, HL, Q, QS bearing spacer collars are not recessed.

 K, KK, LQ, LL, LS Sizes ONLY: Place pair of half round rings on shaft and slide inner bearing spacer collar over half round rings to lock them in place.

9. Thread the bearing housing with lipseals; end cap, outer bearing spacer collar and bearings installed into bracket.
THRUST BEARING ADJUSTMENT

1. Loosen the two set screws in the outer face of the bearing housing and rotate the bearing housing in a clockwise direction until it cannot be turned any more. This ensures the rotor is all the way forward and is touching the head. It will not be possible to turn the rotor by hand in this location.

2. Make a mark on the outside diameter of the bearing housing and a corresponding mark on the bearing bracket.

3. Rotate the bearing housing in a counter clockwise direction until the mark on the outside diameter of the bearing housing is past the mark on the bearing bracket per "Table 2" on page 8. This will provide the standard end clearance for the pump. If possible, check end clearance with feeler gauge between idler and rotor faces. Operating the pump at higher temperatures or viscosities may require additional end clearance. Contact your local Viking representative for those clearances.

4. Tighten setscrews in the outer face of the bearing housing.

5. Rotate the rotor shaft by hand to make sure it turns freely.

10. Put lockwasher and locknut on shaft. Insert length of hardwood or brass through port opening between rotor teeth to keep shaft from turning. Tighten locknut as per "Table 1" on page 8. If tang does not line up with slot, tighten locknut until it does. Failure to tighten locknut or engage lockwasher tang could result in early bearing failure and cause damage to rest of pump. Remove length of hardwood or brass from port opening.

11. Adjust pump end clearance, see "Thrust Bearing Adjustment" on page 8.

12. Reinstall drain plug in casing / bracket.

13. Lubricate all grease fittings with multi-purpose grease, NLGI #2. The factory uses polyurea type grease. Thoroughly clean out grease of using another grease chemistry.

⚠ DANGER !

Before starting pump, be sure all drive equipment guards are in place.

Failure to properly mount guards may result in serious injury or death.

TABLE 1: LOCKNUT TORQUE

<table>
<thead>
<tr>
<th>Pump Size</th>
<th>Torque (Ft.-Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, HL</td>
<td>50-70</td>
</tr>
<tr>
<td>K, KK, LQ, LL</td>
<td>100-130</td>
</tr>
<tr>
<td>LS</td>
<td>120-150</td>
</tr>
<tr>
<td>Q, QS</td>
<td>170-190</td>
</tr>
</tbody>
</table>

Before opening any Viking pump liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure:

1. That any pressure in the chamber has been completely vented through the suction or discharge lines, or other appropriate openings or connections.

2. That the driving means (motor, turbine, engine, etc.) has been “locked out” or made non-operational, so that it cannot be started while work is being done on pump.

3. That you know what liquid the pump has been handling and the precautions necessary to safely handle the liquid. Obtain a material safety data sheet (MSDS) for the liquid to be sure these precautions are understood.

Failure to follow above listed precautionary measures may result in serious injury or death.

THRESH BEARING ADJUSTMENT

1. Loosen the two set screws in the outer face of the bearing housing and rotate the bearing housing in a clockwise direction until it cannot be turned any more. This ensures the rotor is all the way forward and is touching the head. It will not be possible to turn the rotor by hand in this location.

2. Make a mark on the outside diameter of the bearing housing and a corresponding mark on the bearing bracket.

3. Rotate the bearing housing in a counter clockwise direction until the mark on the outside diameter of the bearing housing is past the mark on the bearing bracket per "Table 2" on page 8. This will provide the standard end clearance for the pump. If possible, check end clearance with feeler gauge between idler and rotor faces. Operating the pump at higher temperatures or viscosities may require additional end clearance. Contact your local Viking representative for those clearances.

4. Tighten setscrews in the outer face of the bearing housing.

5. Rotate the rotor shaft by hand to make sure it turns freely.

TABLE 2: END CLEARANCE CHART

<table>
<thead>
<tr>
<th>Size</th>
<th>Series</th>
<th>Standard End Clearance (Inches)</th>
<th>Turn Bearing Housing CCW Length on OD (Inches)</th>
<th>Additional Length on OD bearing House for .001" End Clearance (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, HL</td>
<td>1224A-CHC1 Series™</td>
<td>0.011"</td>
<td>2.50"</td>
<td>0.22"</td>
</tr>
<tr>
<td></td>
<td>1224A-CHC2 Series™</td>
<td>0.011"</td>
<td>2.50"</td>
<td>0.22"</td>
</tr>
<tr>
<td>K, KK</td>
<td>1224A-CHC1 Series™</td>
<td>0.020"</td>
<td>5.00"</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>1224A-CHC2 Series™</td>
<td>0.015"</td>
<td>3.75"</td>
<td>0.25"</td>
</tr>
<tr>
<td>LQ, LL</td>
<td>1224A-CHC1 Series™</td>
<td>0.020"</td>
<td>5.00"</td>
<td>0.25"</td>
</tr>
<tr>
<td></td>
<td>1224A-CHC2 Series™</td>
<td>0.013"</td>
<td>3.25"</td>
<td>0.25"</td>
</tr>
<tr>
<td>Q, QS</td>
<td>1224A-CHC1 Series™</td>
<td>0.025"</td>
<td>7.75"</td>
<td>0.31"</td>
</tr>
<tr>
<td></td>
<td>1224A-CHC2 Series™</td>
<td>0.015"</td>
<td>4.65"</td>
<td>0.31"</td>
</tr>
</tbody>
</table>
INSTALLATION: HARDENED IRON IDLER BUSHING

The 1224A-CHC Series™ pumps come with cross-drilled idler and idler bushing assemblies. Viking recommends buying replacement idler & bushing assemblies, which are part of the Viking Rebuild Kits - see “Table 3” on page 9. However, if the bushing is just being replaced and the existing idler gear re-used, the steps listed below will need to be followed.

1. Lubricate bushing outer diameter and/or idler gear bore with food grade grease.
2. A press must be used for installation
3. Be certain bushing is started straight.
4. Press in bushing, do not stop pressing operation until bushing is in proper position.
5. The new hardened iron bushing will need to be drilled using the existing guide holes in the drilled idler gear. Using carbide bit, slowly drill through holes into the bushing. Use light pressure when breaking through the bushing ID.
6. Remove any burrs with a fine grade of emery cloth.

TABLE 3:
CHC CHOCOLATE PUMP O-RING & REBUILD KITS

<table>
<thead>
<tr>
<th>Pump Models</th>
<th>O-Ring Kit</th>
<th>Rebuild Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-H1</td>
<td>3-464-REBUILD-K467</td>
</tr>
<tr>
<td>HL1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-H1</td>
<td>3-464-REBUILD-K468</td>
</tr>
<tr>
<td>K1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-K1</td>
<td>3-464-REBUILD-K469</td>
</tr>
<tr>
<td>KK1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-K1</td>
<td>3-464-REBUILD-K470</td>
</tr>
<tr>
<td>LQ1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-L2</td>
<td>3-464-REBUILD-K471</td>
</tr>
<tr>
<td>LL1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-L2</td>
<td>3-464-REBUILD-K472</td>
</tr>
<tr>
<td>LS1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-L1</td>
<td>3-464-REBUILD-K473</td>
</tr>
<tr>
<td>Q1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-Q1</td>
<td>3-464-REBUILD-K474</td>
</tr>
<tr>
<td>QS1224A CHC1 & CHC2</td>
<td>3-464-ORG-877-Q1</td>
<td>3-464-REBUILD-K475</td>
</tr>
</tbody>
</table>

SPACER COUPLING LENGTHS

The O-Pro™ Barrier Seal was specially designed to that it could be removed and the food grade O-Rings replaced with minimal pump disassembly. In order to remove the bearing housing and O-Pro™ Barrier Seal with ease, Viking recommends using the following Spacer Coupling gaps:

<table>
<thead>
<tr>
<th>Pump Size</th>
<th>Gap (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, HL</td>
<td>4.75"</td>
</tr>
<tr>
<td>K, KK, LQ, LL, LS</td>
<td>6.25"</td>
</tr>
<tr>
<td>Q, QS</td>
<td>7.75"</td>
</tr>
</tbody>
</table>

APPENDIX (FORMERLY TSM 000)

NOTE: This Appendix section is for reference only. Not all pump construction features apply to pumps within this Technical Service Manual.

GENERAL INSTALLATION NOTES

Before installation is started, a few items of a general nature should be considered.

1. Location - always locate the pump as close as possible to the supply of liquid to be pumped. Locate it below the liquid supply if at all practical. Viking pumps are self priming but the better the suction conditions the better the performance.
2. Accessibility - the pump should be located where it is accessible for inspection, maintenance, and repair. For large pumps, allow room to remove the rotor and shaft without removing the pump from the base.
3. Port Arrangement - since the pumps have different port arrangements depending on the model, port location should be checked before starting the installation. The ports may be upright, opposite or at right angles to each other, see Figure A1. The right angle ports are normally right-hand, see Figure A2; some models are available with left-hand arrangements; still other models are available with the right angle ports located in any one of eight positions including right-hand and left-hand.
4. Suction/Discharge - shaft rotation will determine which port is suction and which is discharge. A look at Figure A3 will show how rotation determines which port is which. As the pumping elements (gears) come out of mesh, point “A” on Figure A3, liquid is drawn into the suction port. Then at point “B” the gears come into mesh, and the liquid is forced out the discharge port. Reversing the rotation reverses the flow through the pump. When determining shaft rotation, always look from the shaft end of the pump. Unless otherwise specified, rotation is assumed to be clockwise (CW), which makes the suction port on the right side of the pump. The idler pin, which is offset in the pump head, should be properly positioned toward and an equal distance between the port connections. See Figure A3 for correct idler pin location in relation to pump ports.
FIGURE A5-B: RETURN-TO-TANK PRESSURE RELIEF VALVE

⚠️ CAUTION !
Internal type relief valves mounted on Viking pumps should always have the cap or bonnet pointed toward the suction side of the pump. Return-to-tank type relief valves should always be mounted on the discharge side of the pump. If pump rotation is reversed, change the relief valve. Turn the internal type end for end; move the return-to-tank type to the other port. If a particular installation rotation is reversed, e.g., using one pump to fill a tank, and then by use of a reversing switch or other means of changing the rotation to permit the same pump to circulate the liquid through a heater or to load out, then pressure protection must be provided on both sides of the pump for both rotations. This may be a combination of relief valves, torque limiting devices or rupture disks.

⚠️ CAUTION !
Pumps or systems without relief valves should have some form of pressure protection, e.g. torque limiting devices or rupture disks.

5. Pressure Protection - Viking pumps are positive displacement pumps. This means that when the pump is rotated, liquid will be delivered to the discharge side of the pump. If there is no place for this liquid to go, i.e. the discharge line is blocked or closed, pressure can build up until the motor stalls, the drive equipment fails, a pump part breaks or ruptures, or the piping bursts. Because of this, some form of pressure protection must be used with a positive displacement pump. This may be a relief valve mounted directly on the pump, an inline relief valve, a torque limiting device or a rupture disk.

The pressure relief valve mounted on most Viking pumps and most in-line valves are of the spring-loaded poppet design. See Figure A4. The spring (a) holds poppet (b) against the seat in the valve body (c) with a given force determined by the spring size and by how tightly it is compressed by the adjusting screw (d). The pump discharge pressure pushes against the underside of the poppet at point (e). When the force exerted by the liquid under the poppet exceeds that exerted by the spring, the poppet lifts and liquid starts to flow through the valve.
As the discharge pressure builds up, more and more of the liquid flows through until a pressure is reached at which all of the liquid being pumped is going through the valve. This pressure is the relief valve setting.

Viking pumps can be furnished with either an internal pressure relief valve - one which directs the flow from the valve back to the suction side of the pump - or a return-to-tank valve - which directs the flow through piping back to the supply tank. See Figure A5-A and Figure A5-B. An inline relief valve mounted in the discharge piping also directs the flow back to the supply tank. This type of valve should be mounted close to the pump so that the pressure drop through the piping between the pump and the valve is at a minimum. Be sure there are no shutoff valves between the pump and relief valve. Piping from a return-to-tank or an in-line valve to the supply tank should also be as short and as large as possible.

NOTE: On some models, the relief valve is mounted on the pump casing instead of the pump head.

The spring-loaded poppet-type valve is strictly a differential valve, sensing only those pressures on each side of the poppet. It should not be used as a pressure or flow control device. It is intended strictly as a relief valve.

The pressure at which either the return-to-tank or internal relief valve bypasses can be changed by turning the adjusting screw. Do not back the adjusting screw all the way out. Stop when spring tension is off the screw (the screw starts to turn easily). For details on maintenance of the relief valve, refer to the Technical Service Manual covering your model series.

6. Motor - follow local electrical codes when hooking up motors.

FOUNDATION
Every pump should have a solid foundation. It may be any structure sufficiently strong to hold the pump rigid and to absorb any strain or shock that may be encountered.

A certified print of the pumping unit should be used in preparing the foundation. If a separate foundation is provided, make it at least four inches wider and longer than the base of the unit.

When the unit is placed on the foundation, it should be leveled and checked for position against the piping layout and then fastened down.

COMPONENT & UNIT LIFTING FEATURES
Removable lifting features, such as threaded eye bolts and hoist rings, installed in components (pumps, reducers, motors, etc.) and baseplates should be left on the components. These features are used to safely lift and move the individual components. Following are general guidelines for lifting Viking Pump® units.

NOTE: NEVER lift the unit with slings unsecured under the base. The slings can slide, allowing the unit to tip and/or fall. Improper lifts can result in personal injury and/or damage to the unit.
CHECK ALIGNMENT AFTER MOUNTING

For detailed coupling alignment procedures see coupling manufacturers’ recommendations.

The pump, drive, and motor were properly aligned at the time they were assembled. During shipping and mounting the alignment is often disturbed. **BE SURE TO RECHECK ALIGNMENT AFTER THE PUMP UNIT IS INSTALLED!**

1. Check pump ports to be sure they are square and in the proper position; shim or move the pump as required. Do not force piping to line up with the ports.

2. If the pump is driven by a flexible coupling(s) either directly connected to the motor or through a reducer, remove any coupling guards or covers and check alignment of the coupling halves. At a minimum, a straightedge (such as a piece of key stock) across the coupling must rest evenly on both rims at the top, bottom, and sides. See Figure A10-A.

3. If the pump is driven by V-belts, check the alignment by using a long straightedge or tightly drawn string across the face of the sheaves. See Figure A10-B.

4. Make a final check on alignment after piping is hooked up. Refer to item 13 in Piping section. Figure A11 and Figure A12 show typical direct drive and gear reducer drive units.

5. For high temperature applications (those above 300°F) allow the pump to reach operating temperature, then recheck alignment.
11. When fastening the piping to the pump it should not be necessary to impose any strain on the pump casing. "Springing" or "drawing" the piping up to the pump will cause distortion, possible misalignment, and probable rapid wear of the pump. Do not use the pump to correct errors in piping layout or assembly.

12. All joints of the piping system should be tight; pipe sealer will help assure leak-free threaded joints. Leaks in the suction line permitting air to be drawn in may cause a noisy pump or a reduction in capacity. It is not recommended to use PTFE tape on NPT ports as a pipe sealer. This action can result in cracks in the pump.

13. ALIGNMENT - Check the alignment of the drive after the piping is hooked up. As a final check on pump alignment, remove the head of the pump and with a feeler gauge determine if there is clearance all the way around between the rotor and casing. Because of manufacturing tolerances, bushing clearances, etc., the rotor may not be centered in the casing, but it should not drag; dragging would indicate unit misalignment or casing distortion from piping strain. Making this check is most desirable on installations involving Q, M and N size general purpose pumps.

14. The auxiliary piping hooked to jackets, glands, etc. for heating, cooling, quenching, or for other purposes should receive the same attention as the piping handling the pumped liquid.

15. Provide a pressure relief device in any part of a pump and piping system that can be valved off and, thus, completely isolated. This is particularly important:
 a. When handling a cold liquid such as refrigeration ammonia that can warm up to ambient temperatures when the pump is shut off.
 b. When handling a liquid such as asphalt or molasses that has to be heated before it can be pumped.

 The rise in temperature causes the liquid to expand; if there is no provision for pressure relief in the closed off section, there is a chance that the pump or piping will rupture.

Piping

The cause of many pumping problems can be traced to suction piping. It should always be as large and short as practical. For help in selecting the proper size suction and discharge piping, refer to Viking General Catalog Section 510.

Before starting the layout and installation of your piping system, consider the following points:

1. Never use piping smaller than the pump port connections.
2. Be sure the inside of the pipe is clean before hooking it to the pump.
3. FOOT VALVE - When pumping a light liquid with a suction lift, a foot valve at the end of the suction piping or a check valve in the first horizontal run will hold the liquid in the line and make it easier for the pump to prime. Be sure the foot or check valve is big enough so that it doesn’t cause excessive line loss.
4. When approaching an obstacle in the suction or discharge line, go around the obstacle instead of over it. Going over it creates an air pocket. See Figure A13.
5. Where practical, slope the piping so no air or liquid pockets will be formed. Air pockets in the suction line make it hard for the pump to prime.
6. For a suction line with a long horizontal run,! keep the horizontal portion below the liquid level if possible. This keeps the pipe full of liquid and reduces the amount of air the pump must evacuate at startup. This is most helpful when there is no foot valve. See Figure A14.
7. When piping a hot or cold system (liquid being handled is at a temperature different from the air surrounding the pump), be sure allowance is made for expansion and contraction of the piping. Loops, expansion joints, or unsecured (this does not mean unsupported) runs should be used so the pump casing is not distorted.
8. STRAINER - It is always good practice to consider a strainer on the suction side of a positive displacement pump. The strainer will keep foreign objects from going into the pump. Without a strainer objects can lock the pump, and damage the internals and drive. The strainer basket mesh or perforation size should be big enough so that it does not cause excessive pressure drop, but it should be fine enough to protect the pump. When in doubt as to the proper size, check with the manufacturer, giving pipe size, flow rate, and viscosity involved. Provision should be made for cleaning the strainer. If the pump operates continuously, a bypass should be built around the strainer, or two strainers should be put in parallel with proper valving so they can be isolated for cleaning. Use of a strainer is particularly important at startup to help clean the system of weld beads, pipe scale, and other foreign objects. For additional information, refer to TSM 640.
9. If the pump is not equipped with a relief valve, consideration should be given to mounting one in the discharge line. Refer to discussion on pressure protection under item 5 in General Installation Notes section.
10. The pump should not be used to support the piping. The weight of the piping should be carried by hangers, supports, stands, etc.
11. When fastening the piping to the pump it should not be necessary to impose any strain on the pump casing. "Springing" or "drawing" the piping up to the pump will cause distortion, possible misalignment, and probable rapid wear of the pump. Do not use the pump to correct errors in piping layout or assembly.

FIGURE A13

FIGURE A14

- Check the alignment of the drive after the piping is hooked up. A final check on pump alignment, remove the head of the pump and with a feeler gauge determine if there is clearance all the way around between the rotor and casing. Because of manufacturing tolerances, bushing clearances, etc., the rotor may not be centered in the casing, but it should not drag; dragging would indicate unit misalignment or casing distortion from piping strain. Making this check is most desirable on installations involving Q, M and N size general purpose pumps.

- The auxiliary piping hooked to jackets, glands, etc. for heating, cooling, quenching, or for other purposes should receive the same attention as the piping handling the pumped liquid.

- Provide a pressure relief device in any part of a pump and piping system that can be valved off and, thus, completely isolated. This is particularly important:
 a. When handling a cold liquid such as refrigeration ammonia that can warm up to ambient temperatures when the pump is shut off.
 b. When handling a liquid such as asphalt or molasses that has to be heated before it can be pumped.

The rise in temperature causes the liquid to expand; if there is no provision for pressure relief in the closed off section, there is a chance that the pump or piping will rupture.

FIGURE A13

FIGURE A14

- Check the alignment of the drive after the piping is hooked up. A final check on pump alignment, remove the head of the pump and with a feeler gauge determine if there is clearance all the way around between the rotor and casing. Because of manufacturing tolerances, bushing clearances, etc., the rotor may not be centered in the casing, but it should not drag; dragging would indicate unit misalignment or casing distortion from piping strain. Making this check is most desirable on installations involving Q, M and N size general purpose pumps.

- The auxiliary piping hooked to jackets, glands, etc. for heating, cooling, quenching, or for other purposes should receive the same attention as the piping handling the pumped liquid.

- Provide a pressure relief device in any part of a pump and piping system that can be valved off and, thus, completely isolated. This is particularly important:
 a. When handling a cold liquid such as refrigeration ammonia that can warm up to ambient temperatures when the pump is shut off.
 b. When handling a liquid such as asphalt or molasses that has to be heated before it can be pumped.

The rise in temperature causes the liquid to expand; if there is no provision for pressure relief in the closed off section, there is a chance that the pump or piping will rupture.

FIGURE A13

FIGURE A14

- Check the alignment of the drive after the piping is hooked up. A final check on pump alignment, remove the head of the pump and with a feeler gauge determine if there is clearance all the way around between the rotor and casing. Because of manufacturing tolerances, bushing clearances, etc., the rotor may not be centered in the casing, but it should not drag; dragging would indicate unit misalignment or casing distortion from piping strain. Making this check is most desirable on installations involving Q, M and N size general purpose pumps.

- The auxiliary piping hooked to jackets, glands, etc. for heating, cooling, quenching, or for other purposes should receive the same attention as the piping handling the pumped liquid.

- Provide a pressure relief device in any part of a pump and piping system that can be valved off and, thus, completely isolated. This is particularly important:
 a. When handling a cold liquid such as refrigeration ammonia that can warm up to ambient temperatures when the pump is shut off.
 b. When handling a liquid such as asphalt or molasses that has to be heated before it can be pumped.

The rise in temperature causes the liquid to expand; if there is no provision for pressure relief in the closed off section, there is a chance that the pump or piping will rupture.
START UP

Before starting the pump, check the following:

1. Are there vacuum and pressure gauges on or near the pump? These gauges are the quickest and most accurate way of finding out what is happening in the pump.
2. Check alignment - See suggestions in the Alignment section of this manual.
3. Check piping to be sure there is no strain on the pump casing.
4. Rotate the pump shaft by hand to be sure it turns freely. MAKE SURE THE PUMP DRIVER IS LOCKED OUT OR CANNOT BE ENERGIZED BEFORE DOING THIS.
5. Jog motor to be sure it is turning in the right direction; refer to discussion on pump rotation under item 4 in General Installation Notes section.
6. Check any relief valves to be sure they are installed correctly. Refer to discussion on relief valves in General Installation Notes section.
7. Check suction piping to be sure:
 a. It is all connected and tight
 b. Valves are open
 c. End of pipe is below liquid level
8. Check discharge piping to be sure:
 a. It is all connected and tight
 b. Valves are open
 c. There is a place for the liquid to go
9. Lubricate any grease fitting on the pump using a #2 NLGI grease. Check any gear reducer, motor, coupling, etc. for instructions and lubricate as recommended by the manufacturer. See Engineering Service Bulletin ESB-515 at the end of the Appendix for Viking standard grease types to check compatibility.
10. For packed pumps, loosen packing gland nuts so gland can be moved slightly by hand. Adjust gland to reduce leakage only after pump has run long enough to reach constant temperature. Packing should weep a little to keep it cool and lubricated.
11. Do not use the Viking pump to flush, pressure test or prove the system with water. Either remove the pump or run piping around it while flushing or testing. Pumping water, dirty or otherwise, can do more damage in a few minutes than months of normal service.
12. Check to be sure all guards are in place.
13. Check the pump to be sure it is heated to operating temperature (if jacketed or heat traced).

If the pump begins to deliver liquid within 60 seconds, it can continue to be operated. If liquid is not leaving the discharge port, stop the pump. Running the pump longer than one minute without liquid inside it can damage the pump. Review the steps just outlined, consider what the suction and discharge gauges indicate, and see Troubleshooting section. If everything appears to be in order, put some liquid in the pump. This will help it prime.

The pump can be restarted. If nothing is flowing within two minutes, stop the pump. The pump is not a compressor; it will not build up much air pressure. It may be necessary to vent the discharge line until liquid begins to flow.

If the pump still does not deliver flow, the cause may be one or more of the following:

1. Suction line air leaks. Vacuum gauge reading should help determine if this is the problem.
2. End of suction pipe not submerged deep enough in liquid.
3. Suction lift is too great or the suction piping is too small.
4. Liquid is vaporizing in the suction line before it gets to the pump.

If after consideration of these points it still does not pump, review again all points under START UP. Read through Troubleshooting in this manual and try again. If it still does not pump, contact your Viking Pump® representative.

TROUBLESHOOTING

A Viking pump that is properly installed and maintained will give long and satisfactory performance.

NOTE: Before making any pump adjustment or opening the pump liquid chamber in any manner, make sure that:

1. Any pressure in the pumping chamber has been vented through the suction or discharge lines or other openings provided for this purpose.
2. The driver has been “locked out” so that it cannot inadvertently be started while work is being done on the pump.
3. The pump has been allowed to cool down to the point where there is no chance of anyone being burned.

If trouble does develop, one of the first steps toward finding the difficulty is to install a vacuum gauge in the suction port and a pressure gauge in the discharge port. Readings on these gauges often will give a clue as to where to start looking for the trouble.

VACUUM GAUGE - SUCTION PORT

1. High reading would indicate:
 a. Suction line is blocked by a stuck foot valve, stuck gate valve, or plugged strainer.
 b. Liquid is too viscous to flow through the piping.
 c. Lift is too high.
 d. Line is too small.
2. Low reading would indicate:
 a. Air leak in suction line.
 b. End of pipe is not in liquid.
 c. Pump is worn.
 d. Pump is dry - should be primed.
3. Fluttering, jumping, or erratic reading:
 a. Liquid is vaporizing.
 b. Liquid is coming to pump in slugs, possibly an air leak, insufficient liquid above the end of the suction pipe.
 c. Vibrating from cavitation, misalignment, or damaged parts.
PRESSURE GAUGE - DISCHARGE PORT

A. Pump does not pump.
 1. Pump has lost its prime due to air leak, low level in tank, foot valve stuck.
 2. Suction lift is too high.
 3. Rotating in wrong direction.
 4. Motor does not come up to speed.
 5. Suction and discharge valves not open.
 6. Strainer is clogged.
 8. Pump is worn out.
 9. Any changes in the liquid system or operation that would help explain the trouble, e.g. new source of supply, added more lines, inexperienced operators, etc.
 10. Too much end clearance.
 11. Head position is incorrect. See Figure A3.
 12. Temperature changes either in the liquid or environment.
 13. Mag Drive pumps ONLY: The magnetic coupling is decoupling. Changes in application (temperature, pressure, viscosity, etc.) may require torque beyond coupling capabilities.

B. Pump starts, then loses its prime.
 1. Supply tank is empty.
 2. Liquid is vaporizing in the suction line.
 3. Air leaks or air pockets in the suction line; leaking air through packing or mechanical seal.
 4. Pump is worn out.

C. Pump is noisy.
 1. Pump is being starved (heavy liquid cannot get to pump fast enough). Increase suction pipe size or reduce length.
 2. Pump is cavitating (liquid vaporizing in the suction line). Increase suction pipe size or reduce length. If pump is above the liquid, raise the liquid level closer to the pump. If the liquid is above the pump, increase the head of liquid.
 3. Check alignment.
 4. May have a bent shaft or rotor tooth. Straighten or replace.
 5. Relief valve chatter. Increase pressure setting.
 6. May have to anchor base or piping to eliminate or reduce vibration.
 7. May be a foreign object trying to get into the pump through the suction port.
 8. Mag Drive pumps ONLY: The magnetic coupling has decoupled. Shut off and let cool, then restart.

D. Pump not up to capacity.
 1. Starving or cavitating. Increase suction pipe size or reduce length.
 2. Strainer partially clogged.
 3. Air leak in suction piping or along pump shaft.
 4. Running too slowly. Check the motor is running at the correct speed and that it is wired correctly.
 5. Bypass line around pump partially open.
 6. Relief valve set too low or stuck open.
 7. Pump is worn out.
 8. Too much end clearance.
 9. Head position incorrect. See Figure A3.

E. Pump takes too much power.
 1. Running too fast. Verify the motor speed, reducer ratio, sheave size, and other drive components are correct for the application?
 2. The liquid is too viscous for the size of the unit. Heat the liquid to reduce viscosity, increase the pipe size, slow down the pump, or use a larger motor.
 3. Discharge pressure higher than calculated. Verify with a pressure gauge. Increase size or reduce length of pipe, reduce speed (capacity), or get bigger motor.
 4. Packing gland drawn down too tight.
 5. Pump misaligned.
 6. Extra clearance on pumping elements may not be sufficient for operating conditions. Check parts for evidence of drag or contact in pump and increase clearance where necessary.
 7. System pressure relief valve is set too high.
 8. Bushings have locked to shaft or pin, or the liquid has set up in the pump.

F. Rapid Wear.
 On most applications the pump will operate for many months or years before it gradually loses its ability to deliver capacity or pressure. Examination of such a pump would show a smooth wear pattern on all parts. Rapid wear, occurring in a few minutes, hours or days, shows up as heavy grooving, galling, twisting, breaking or similar severe signs of trouble. See Rapid Wear Table.
Rapid Wear Table

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>EVIDENCE</th>
<th>POSSIBLE SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ABRASIVES</td>
<td>Gouges or marks made by large, hard particles; a rapid wearing away of bushings from very small abrasives; or anything in between.</td>
<td>Flush the system with the pump removed. Install strainer in suction line. Most abrasive objects and particulate is removed after a few cycles (or days) of flushing.</td>
</tr>
<tr>
<td>2 CORROSION</td>
<td>Rust, pitting or metal appears to be "eaten" away.</td>
<td>Check the Viking General Catalog Liquid List for materials of construction recommendation. Consider whether all of the materials used in pump construction were attacked; consider other materials used in the system to determine how they resisted the liquid. Check to see whether or not the liquid has been contaminated to make it more corrosive than anticipated.</td>
</tr>
<tr>
<td>3 EXCEEDING OPERATING LIMITS</td>
<td>Noisy operation, broken bushings, twisted shaft, parts show evidence of high heat (discoloration).</td>
<td>Review General Catalog for operating limits on particular model involved. Increase end clearance and/or contact your Viking Pump representative with details of the application, so that information regarding proper extra clearance may be provided.</td>
</tr>
<tr>
<td>4 INSUFFICIENT EXTRA CLEARANCE</td>
<td>Pump may stall. Evidence of heavy contact between end of rotor teeth and head or other parts.</td>
<td>Increase end clearance and/or contact your Viking Pump representative with details of the application, so that information regarding proper extra clearance may be provided.</td>
</tr>
<tr>
<td>5 LACK OF LUBRICATION</td>
<td>Noisy bearings, localized heating at bearings or lip seal, smoke, rapid bushing wear.</td>
<td>Be sure all grease fittings are greased before starting, and instructions for lubrication of drive equipment are followed; consider use of auxiliary lubricating equipment.</td>
</tr>
<tr>
<td>6 MISALIGNMENT</td>
<td>Wear on only one part of a surface, e.g., one side of the casing, one side of the packing gland, only a portion of the face of the head.</td>
<td>Double check alignment of drive equipment and piping. Check the alignment under conditions as close to operating conditions as possible.</td>
</tr>
<tr>
<td>7 RUN DRY</td>
<td>Pump stalls because parts have uneven expansion caused by frictional heat; galling between surfaces having relative motion; seal seats and idler pins changing color because of high heat.</td>
<td>Be sure there is liquid in the system at the time of start up. Provide some kind of automatic alarm or shut-off if supply tank runs dry.</td>
</tr>
</tbody>
</table>

Preventative Maintenance

Performing a few preventative maintenance procedures will extend the life of your pump and reduce the overall cost of ownership.

A. Lubrication - Grease all grease fittings after every 500 hours of operation. If service is severe, grease more often. Do it gently with a hand gun until the grease exiting the lip seal or relief plug is similar in consistency and color to the new grease. Use a NLGI #2 grease for normal applications. See ESB-515 at the end of the Appendix for Viking standard grease types to check compatibility. For hot or cold applications, use appropriate grease. O-Pro™ seals should also be greased every 500 hours of operation with a lubricating fluid compatible with the process fluid.

B. Packing Adjustment - Occasional packing adjustment may be required to keep leakage to a slight weep. If impossible to reduce leakage by gentle tightening, replace packing or use different type. Refer to Technical Service Manual on particular model series for details on repacking.

C. End Clearance Adjustment - After long service, the running clearance between the end of the rotor teeth and the head may have increased through wear. This wear may cause a loss of capacity or pressure. Resetting end clearance will normally improve pump performance. Refer to TSM on particular model series for procedure on adjusting end clearance for pump involved.

D. Examine Internal Parts - Periodically remove the head, examine idler and bushing and head and pin for wear. Replacing a relatively inexpensive idler bushing and idler pin after only moderate wear will eliminate the need to replace more expensive parts at a later date. Refer to TSM on particular model series for procedure on removing head of the pump. Be sure idler does not slide off the idler pin as the head is removed. If it does slide off the idler can cause personal injury or damage the part.

E. Cleaning the Pump - A clean pump is easier to inspect, lubricate, adjust, and runs cooler.

F. Storage - If pump is to be stored or not used for six months or more, pump must be drained, and a light coat of non-detergent SAE 30 weight oil must be applied to all internal pump parts. Lubricate fittings and apply grease to pump shaft extension. Viking suggests rotating pump shaft by hand one complete revolution every 30 days to circulate the oil. Retighten all gasketed joints before using the pump.
DO'S & DON'TS

Do’s and Don’ts for installation, operation, and maintenance of Viking pumps to assure safe, long, trouble-free operation.

INSTALLATION
1. **DO** install pump as close to supply tank as possible.
2. **DO** leave working space around the pumping unit.
3. **DO** use large, short, and straight suction piping.
4. **DO** install a strainer in the suction line.
5. **DO** double check alignment after the unit is mounted and piping is hooked up.
6. **DO** provide a pressure relief valve for the discharge side of the pump.
7. **DO** cut out the center of gaskets used as port covers on flanged port pumps.
8. **DO** record pump model number and serial number and file for future reference.

OPERATION
1. **DON’T** run pump at speeds faster than shown in the catalog for your model.
2. **DON’T** require pump to develop pressures higher than those shown in the catalog for your model.
3. **DON’T** operate pumps at temperatures above or below limits shown in the catalog for your pump.
4. **DON’T** operate pumps without all guards being in place.
5. **DON’T** operate pump without a relief valve on the pump or in the discharge piping. Be sure valve is mounted and set correctly.
6. **DON’T** exceed catalog limits for temperature and pressures of fluids in jacketed areas of pump.
7. **DON’T** use the pump in a system which includes a steam, air, or vapor blow or purge **without** provision for over-speed shutdown, in case the pump starts to act as a turbine and over-speeds the drive.
8. **DON’T** operate the pump with all of the liquid bypassing through a pump mounted internal type relief valve, or without any flow of liquid going through the pump for more than a couple of minutes. Operation under either of these conditions may result in a heat build-up in the pump, which could cause hazardous conditions or happenings.

MAINTENANCE
1. **DO** make sure any pump that has residual system pressure in it, or that has handled high vapor pressure liquids, such as LP-gas, ammonia, Freons, etc., has been vented through the suction or discharge lines or other openings provided for this purpose.
2. **DO** make sure that if the pump is still hooked to the driver while maintenance is being performed that the driver has been “locked out”, so that it cannot be inadvertently started while work is being done on the pump.
3. **DO** make sure any pump that has handled a corrosive, flammable, hot, or toxic liquid has been drained, flushed, vented and/or cooled before it is disassembled.
4. **DO** remember that a few simple preventative maintenance procedures such as periodic lubrication, adjustment of end clearance, examination of internal parts, etc., will extend the service life of your pump.
5. **DO** obtain, read and keep maintenance instructions furnished with your pump.
6. **DO** have spare parts, pumps or standby units available, particularly if the pump is an essential part of a key operation or process.
7. **DON’T** drop parts during disassembly, e.g., idler can slip from the pin as the head is removed from the pump. It may cause personal injury or damage the part.
8. **DON’T** stick fingers in the ports of a pump. Serious injury may result.
9. **DON’T** spin the idler on the idler pin. Fingers may be jammed between teeth and crescent.
LUBRICATION OF VIKING PUMPS

Usage of Grease

<table>
<thead>
<tr>
<th>General Description of Grease Used by Viking</th>
<th>Viking Recommended Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease used for anti-friction bearings, sleeve bearings and lantern rings</td>
<td>Premium EP, Multi-purpose polyurea base grease</td>
</tr>
<tr>
<td>Grease used for bracket bushing when seal is behind rotor</td>
<td>Petrolatum</td>
</tr>
<tr>
<td>Grease used for O-Pro™ Seal</td>
<td>Edible Grease, aluminum complex</td>
</tr>
</tbody>
</table>

Lubricate each grease fitting every 500 hours of operation or every six months, whichever occurs first. If service is severe, grease more often. Be sure the grease is compatible with the grease used by Viking. Grease used for the bracket bushing and O-Pro™ Seal should be compatible with the liquid being pumped.

Reservoir on Ammonia Pumps: The Series 4924A ammonia pumps are shipped without oil in the reservoir. Before start-up, fill the reservoir with one pint of Light Refrigeration Oil that is compatible with the Neoprene seal and with a maximum viscosity of 15,000 SSU at operating temperature. Drain and refill the reservoir after the first 200 hours of operation and every 1000 hours thereafter. Refer to Technical Service Manual TSM 1467.

Pumping Chamber of Stainless Pumps: All internal parts are coated with test fluid to avoid galling when the pump is first installed. Be sure the pump is kept full of liquid when in operation to prevent damage to the pump.

LUBRICATION OF VIKING REDUCERS

Viking gear reducers, “A”, “B”, “C” sizes use SAE 30 oil above 32°F and SAE 10W oil below 32°F.
- A Size: 3/8 PT. (6 oz)
- B Size: 1/2 PT. (8 oz.)
- C Size: 2-1/4 PT. (36 oz.)

Viking gear reducers are shipped less oil. Before start-up, fill to proper level with quantity and type of oil shown in box at left. After first 100 hours of operation, drain and refill with new lubricant. Check lubricant level every 2000 hours or every six months. Once each year, drain and refill.

LUBRICATION OF VIKING ASSOCIATIVE EQUIPMENT

Check any motor, coupling, gear reducer or other drive equipment for manufacturer’s instructions and lubricate as recommended.
DECLARATION OF CONFORMITY

Declarant: Mike Strei, Engineering Director
Date: May 3, 2018

Statement: Viking 1224A-CHC1 & 1224A-CHC2 cast iron chocolate pumps are designed specifically for the chocolate industry. All materials associated with these models are suitable for this type of application according to Regulation (EC) Directive No 1935/2004 for good contact materials. As manufacturer and first marketer, we declare that 1224A-CHC1 & 1224A-CHC2 pump series comply with the provisions of:

- the foodstuffs, Consumer Goods and Animal Feed Codes (German LGFB)
- the Consumer Goods Ordinance (German BedGgstV)

It is certified that we manufacture our products on the basis of Good Manufacturing Practice according to Ordinance (EC) 2023/2006 (GMP Directive) and that our products are marketable within the European community.

Mike Strei
Engineering Director
May 3, 2018