

DOC023.60.90673

BioTector B7000 — Analizator on-line TOC TN TP

Konserwacja i usuwanie usterek

02/2025, Wydanie 4

Rozdział 1 Konserwacja	3
1.1 Informacje dotyczące bezpieczeństwa	3
1.1.1 Symbole i oznaczenia bezpieczenstwa	3
1.1.2 Korzystanie z informacji o zagrozeniach	4
1.1.3 Zalecenia dotyczące bezpieczenstwa elektrycznego	4
1.2. Harmonogram konsonwacii	4
1.2 Mannonogram konserwacji	5
1.4 Napełnianie lub wymiana odczynników	6
1.5 Otwórz drzwi	0
1.6 Wymiana bezpiecznika	8
1.7 Procedura wyłaczania	10
1.7.1 Płukanie przewodów odczynników	10
Rozdział 2 Rozwiazywanie problemów	13
2.1 Usterki systemu	.13
2.2 Ostrzeżenia systemu	.17
2.3 Powiadomienia	27
2.4 Wyświetlanie historii stanu przed usterką	27
Rozdział 3 Diagnostyka	29
3.1 Wykonywanie testu ciśnienia	29
3.2 Wykonywanie testu przepływu	29
3.3 Wykonywanie testu na obecność ozonu	30
3.4 Testowanie pompy próbki	31
3.5 Wykonywanie testu pH	32
3.6 Wykonaj test fazy ciekłej	33
3.7 Wykonywanie symulacji analizy utleniania	35
3.8 Przeprowadzić symulacje analizy cieczy	37
3.9 Wykonywanie testu przekaznika lub wyjscia 4–20 mA	39
3.10 Wyswietlanie stanu wejscia i wyjscia	41
3.11 wyswielianie sianu magistrali Modbus	4Z
	42
Rozdział 4 Obudowa części analitycznej	45
Rozdział 5 Elementy obudowy sterowniczej	47
Rozdział 6 Części zamienne i akcesoria	49

Rozdział 1 Konserwacja

Wiele zagrożeń. Tylko wykwalifikowany personel powinien przeprowadzać prace opisane w tym rozdziale niniejszego dokumentu.

1.1 Informacje dotyczące bezpieczeństwa

Przed przystąpieniem do czynności konserwacyjnych lub usuwania usterek należy przeczytać niniejszą instrukcję w całości. Należy zwrócić uwagę na wszystkie informacje dotyczące niebezpieczeństwa i kroków zapobiegawczych. Niezastosowanie się do tego może spowodować poważne obrażenia obsługującego lub uszkodzenie urządzenia.

Należy upewnić się, czy systemy zabezpieczające wbudowane w urządzenie pracują prawidłowo. Nie używać ani nie instalować tego urządzenia w inny sposób, aniżeli podany w niniejszej instrukcji.

1.1.1 Symbole i oznaczenia bezpieczeństwa

Przeczytaj wszystkie etykiety dołączone do urządzenia. Nieprzestrzeganie zawartych na nich ostrzeżeń może doprowadzić do obrażeń ciała i/lub uszkodzenia urządzenia. Symbol umieszczony na urządzeniu jest zamieszczony w podręczniku i opatrzony informacją o należytych środkach ostrożności.

Symbole i oznaczenia bezpieczeństwa, które są stosowane na sprzęcie i w dokumentacji produktu. Definicje znajdują się w poniższej tabeli.

	Uwaga/Ostrzeżenie. Ten symbol oznacza, że należy przestrzegać odpowiednich instrukcji dotyczących bezpieczeństwa lub istnieje potencjalne zagrożenie.
4	Niebezpieczne napięcie. Ten symbol oznacza, że występują niebezpieczne napięcia, w przypadku których istnieje ryzyko porażenia prądem elektrycznym.
	Gorąca powierzchnia. Ten symbol wskazuje, iż oznaczony element może być gorący i nie powinien być dotykany bez odpowiedniego zabezpieczenia rąk.
	Substancja żrąca. Ten symbol informuje o obecności substancji silnie korozyjnych lub innych niebezpiecznych substancji i ostrzega o niebezpieczeństwie natury chemicznej. Tylko osoby wykwalifikowane i przeszkolone do pracy z chemikaliami powinny pracować z chemikaliami lub przeprowadzać prace konserwacyjne na chemicznych systemach zasilających związanych z urządzeniem.
	Substancja toksyczna. Ten symbol informuje o istnieniu zagrożenia ze strony substancji toksycznej.
	Ten symbol informuje o obecności urządzeń wrażliwych na wyładowania elektrostatyczne (ESD) i oznacza, że należy zachować ostrożność, aby nie uszkodzić urządzeń.
	Ten symbol informuje o istnieniu zagrożenia z powodu rozprysku odłamków.
	Uziemienie ochronne. Ten symbol wskazuje zacisk przeznaczony do podłączenia zewnętrznego przewodu w celu zabezpieczenia przed porażeniem elektrycznym w przypadku zwarcia (lub zacisku elektrody uziemienia ochronnego).
\ <u></u> <u></u>	Uziemienie bezszumowe (czyste). Ten symbol wskazuje funkcjonalny zacisk uziemiający (np. specjalnie zaprojektowany układ uziemiający), aby uniknąć awarii sprzętu.

Konserwacja

Ten symbol informuje o istnieniu zagrożenia związanego z wdychaniem.
Ten symbol informuje o istnieniu zagrożenia związanego z podnoszeniem, ponieważ przedmiot jest ciężki.
Ten symbol informuje o istnieniu zagrożenia pożarem.
Urządzeń elektrycznych oznaczonych tym symbolem nie wolno wyrzucać do europejskich publicznych systemów utylizacji odpadów. Wyeksploatowane urządzenia należy zwrócić do producenta w celu ich utylizacji. Producent ma obowiązek przyjąć je bez pobierania dodatkowych opłat.

1.1.2 Korzystanie z informacji o zagrożeniach

Poniższe pola ostrzegawcze są używane w niniejszym dokumencie w celu wskazania ważnych instrukcji dotyczących bezpiecznej obsługi sprzętu.

ANIEBEZPIECZEŃSTWO

Wskazuje potencjalnie lub bezpośrednio niebezpieczną sytuację, która — jeśli się jej nie zapobiegnie — doprowadzi do śmierci lub poważnych obrażeń.

AOSTRZEŻENIE

Wskazuje instrukcję dotyczącą potencjalnie niebezpiecznej sytuacji, która może prowadzić do śmierci lub poważnych obrażeń.

Wskazuje konieczność przestrzegania środków ostrożności w przypadku potencjalnie niebezpiecznych sytuacji, które mogą doprowadzić do drobnych lub umiarkowanych obrażeń.

POWIADOMIENIE

Wskazuje sytuację, która — jeśli się jej nie zapobiegnie — może doprowadzić do uszkodzenia urządzenia. Informacja, która wymaga specjalnego podkreślenia.

1.1.3 Zalecenia dotyczące bezpieczeństwa elektrycznego

Zasilacze w obudowie elektrycznej zawierają kondensatory ładowane do niebezpiecznych napięć. Po odłączeniu zasilania sieciowego, przed otwarciem obudowy elektrycznej, kondensatory należy rozładować (przez co najmniej 1 minutę).

1.1.4 Środki ostrożności dotyczące ozonu

Zagrożenie wdychania ozonu. Urządzenie to wytwarza ozon, który jest uwięziony w urządzeniu, w szczególności w wewnętrznej instalacji hydraulicznej. Ozon może zostać uwolniony w warunkach awarii.

Zaleca się podłączenie przyłącza gazu wydechowego do wyciągu lub wyprowadzenie na zewnątrz budynku, zgodnie z lokalnymi, regionalnymi i krajowymi wymaganiami.

Narażenie na nawet niskie stężenia ozonu może uszkodzić delikatną śluzówkę nosa, oskrzela czy płuca. W pewnym stężeniu ozon może powodować bóle głowy, kaszel, podrażnienie oczu, nosa i gardła. Ofiara musi zostać natychmiast wyniesiona na czyste powietrze i musi zostać wezwana do niej pomoc.

Rodzaj i intensywność objawów zależą od stężenia i czasu narażenia (n). Objawy zatrucia ozonem mogą być m.in. następujące.

- Podrażnienie lub pieczenie oczu, nosa lub gardła
- Znużenie
- Ból czoła
- Uczucie ucisku poniżej mostka
- Ściśnięcie lub ucisk
- Kwaśny smak w ustach
- Astma

W przypadku poważniejszego zatrucia ozonem mogą występować takie objawy, jak duszność, kaszel, uczucie zadławienia, tachykardia, zawroty głowy, obniżenie ciśnienia krwi, skurcze, ból w klatce piersiowej i generalny ból ciała. Ozon może powodować obrzęk płuc po jednej lub więcej godzinach od narażenia.

1.2 Harmonogram konserwacji

POWIADOMIENIE

Aby zapobiec uszkodzeniu urządzenia, cotygodniowe konserwacje powinien przeprowadzać przeszkolony operator lub przeszkolony personel serwisowy firmy Hach. Aby zapobiec uszkodzeniu urządzenia, 6-miesięczne i 12-miesięczne konserwacje i usuwanie usterek powinien przeprowadzać przeszkolony personel serwisowy firmy Hach.

Tabela 1 przedstawia zalecany harmonogram czynności konserwacyjnych. Wymagania obiektu i warunki pracy mogą spowodować zwiększenie częstotliwości niektórych zadań.

Zadanie	1 tydzień	6 miesięcy	12 miesięcy	W razie potrzeby
Konserwacja cotygodniowa na stronie 5	X			
Konserwacja co 6 miesięcy ¹		Х		
Konserwacja co 12 miesięcy ¹			Х	
Konserwacja pompy cyrkulacyjnej NF300 ¹		Х	Х	
Napełnianie lub wymiana odczynników na stronie 6				х
Wymiana bezpiecznika na stronie 8				Х
Procedura wyłączania na stronie 10				Х

Tabela 1 Harmonogram konserwacji

1.3 Konserwacja cotygodniowa

Poniższa lista kontrolna służy do wykonywania konserwacji cotygodniowej. Wykonaj zadania w podanej kolejności.

¹ Instrukcje można znaleźć w dokumentacji dołączonej do zestawu konserwacyjnego.

Konserwacja

Zadanie	Początkowe
Wybierz kolejno opcje OPERATION (OPERACJA) > START,STOP (URUCHOM, ZATRZYMAJ) > FINISH & STOP (ZAKOŃCZ I ZATRZYMAJ) lub EMERGENCY STOP (ZATRZYMANIE AWARYJNE).	
Poczekaj, aż na wyświetlaczu pojawi się komunikat "SYSTEM STOPPED (SYSTEM ZATRZYMANY)".	
Upewnij się, że ciśnienie tlenu doprowadzanego do analizatora jest prawidłowe.	
 Koncentrator tlenu podłączony do przefiltrowanego powietrza pomiarowego — 200 L/h przy ciśnieniu poniżej 0,6 bar. Ciśnienie powietrza w przyrządzie: 2,1 bar (30,5 psi, 90 L/min). Maksymalne ciśnienie powietrza wynosi 2,3 bar (33,35 psi). Koncentrator tlenu z wbudowaną sprężarką powietrza — 200 L/h przy ciśnieniu poniżej 0,6 bar Butla z tlenem, 50 L (klasa spawalnicza) – 1,0 bar (14,5 psi) 	
Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SIMULATE (SYMULACJA) > OXIDATION PHASE SIM (SYMULACJA FAZY UTLENIANIA). Wybierz MFC. Ustawić przepływ na 20 L/h. Naciśnij ✓, aby uruchomić sterownik przepływu masy (MFC). Na ekranie zostanie wyświetlony zmierzony przepływ.	
Sprawdź, czy regulator tlenu wskazuje 350 mbar przy 20 L/h. Aby sprawdzić lokalizację, patrz Obudowa części analitycznej na stronie 45.	
Upewnij się, że przepływomierz opróżniania pokazuje wartość 80 cm3/min (4,8 L/h) przy nastawie MFC 20 L/h. Umiejscowienie można sprawdzić w części Obudowa części analitycznej na stronie 45.	
Upewnij się, że poziom odczynnika jest wystarczający. W razie potrzeby napełnij lub wymień pojemniki z odczynnikami. Patrz Napełnianie lub wymiana odczynników na stronie 6.	
Sprawdź, czy pompy odczynników są szczelne. Umiejscowienie można sprawdzić w części Obudowa części analitycznej na stronie 45.	
Sprawdź, czy pompa obiegowa jest szczelna. Upewnij się, że podczas pracy pompy obiegowej płyn przemieszcza się w przewodach. Umiejscowienie można sprawdzić w części Obudowa części analitycznej na stronie 45.	
Sprawdź, czy pompa próbek jest szczelna.	
Upewnij się, że pojemnik na utlenioną próbkę jest szczelny.	
Sprawdź, czy zawory analizatora są szczelne. Umiejscowienie można sprawdzić w części Obudowa części analitycznej na stronie 45.	
Upewnij się, że przewody próbek do analizatora oraz przewody próbek w analizatorze są drożne.	
Upewnij się, że przewody opróżniania z analizatora oraz przewody opróżniania w analizatorze są drożne.	
Upewnij się, że przepływ próbki do pojemnika na utlenioną próbkę lub przewodu próbek jest wystarczający dla świeżej próbki w każdym cyklu analizy.	
Sprawdź, czy w komorze spustowej w analizatorze nie ma zatorów, oraz czy złączka DRAIN (SPUST) nie jest uszkodzona. Umiejscowienie można sprawdzić w części Obudowa części analitycznej na stronie 45.	
Upewnij się, że przewody układu wydechowego są drożne.	
Upewnij się, że filtry w obudowie wentylatora i obudowie odpowietrznika po boku analizatora są drożne.	
W przypadku używania próbnika upewnij się, że jego działanie jest prawidłowe. Sprawdź, czy zapewniony jest wystarczający przepływ do rurki próbkowania.	

1.4 Napełnianie lub wymiana odczynników

AUWAGA

Narażenie na działanie substancji chemicznych. Stosować się do procedur bezpieczeństwa w laboratoriach i zakładać sprzęt ochrony osobistej, odpowiedni do używanych substancji chemicznych. Protokoły warunków bezpieczeństwa można znaleźć w aktualnych kartach charakterystyki (MSDS/SDS) materiałów.

AUWAGA

Narażenie na działanie substancji chemicznych. Usuwać substancje chemiczne i odpady zgodnie z przepisami lokalnymi, regionalnymi i państwowymi.

Po zatrzymaniu analizatora należy napełnić lub wymienić pojemniki na odczynniki kwasowe i zasadowe.

Uwaga: W razie potrzeby napełnij lub wymień pojemniki z odczynnikiem TP i/lub kwasem HCI, gdy analizator pracuje lub jest zatrzymany.

- Wybierz kolejno opcje OPERATION (OPERACJA) > START,STOP (URUCHOM, ZATRZYMAJ) > FINISH & STOP (ZAKOŃCZ I ZATRZYMAJ) lub EMERGENCY STOP (ZATRZYMANIE AWARYJNE).
- 2. Napełnij lub wymień odczynniki.
- Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > COMMISSIONING (PRZYGOTOWANIE DO EKSPLOATACJI) > REAGENTS MONITOR (MONITOR ODCZYNNIKÓW).
- 4. Ustaw objętość odczynników.
- Wybierz opcję OPERATION (OPERACJA) > REAGENTS SETUP (KONFIGURACJA ODCZYNNIKÓW)> INSTALL NEW REAGENTS (INSTALOWANIE NOWYCH ODCZYNNIKÓW), aby napełnić rurki odczynników i przeprowadzić kalibrację zerową.

1.5 Otwórz drzwi

POWIADOMIENIE

Przed otwarciem drzwi należy upewnić się, że uchwyty drzwi są w pełni obrócone, w przeciwnym razie może dojść do uszkodzenia uszczelki drzwi. Jeśli uszczelka drzwi zostanie uszkodzona do obudowy mogą przedostawać się zabrudzenia w postaci kurzu oraz cieczy.

1.6 Wymiana bezpiecznika

ANIEBEZPIECZEŃSTWO

Niebezpieczeństwo śmiertelnego porażenia prądem elektrycznym. Przed wykonaniem tej czynności konserwacyjnej należy odłączyć zasilanie urządzenia oraz złącza przekaźników

▲ NIEBEZPIECZEŃSTWO

Niebezpieczeństwo śmiertelnego porażenia prądem elektrycznym. Przy wymianie bezpieczników należy je wymieniać na modele o takim samym typie i takiej samej wartości znamionowej.

Wymień przepalony bezpiecznik, aby umożliwić prawidłową pracę. Umiejscowienie bezpieczników można sprawdzić w części Rysunek 1. Dane techniczne bezpieczników można znaleźć w części Tabela 2.

Ponadto na górnych drzwiczkach dostępny jest schemat rozmieszczenia bezpieczników.

Rysunek 1 Schemat rozmieszczenia bezpieczników

Tabela 2 Specyfikacje bezpieczników

Pozycja	Nazwa	Liczba	Rozmiar	Materiał	Liczba	Prąd	Rodzaj		
1	Płytka drukowana	81204300-01	Miniatura	Ceramiczny	F1	0,5 A	T 500 mA H250V		
	podgrzewacza TP		5 x 20 mm	5 x 20 mm	5 x 20 mm		F2	1,25 A	T 1,25 A H250V
2	Szyna DIN chłodnicy	Zacisk 47	Miniatura 5 x 20 mm	Ceramiczny	F1	2,5 A (DC)	T 2,5A H 250 V		

Pozycja	Nazwa	Liczba	Rozmiar	Materiał	Liczba	Prąd	Rodzaj	
3	Płytka drukowana przekaźników	81204001-03	Miniatura 5 x 20 mm	Miniatura Szklany 5 x 20 mm	F1	2,5 A (DC)	T 2,5 A L 125 V DC	
					F2	0,5 A (DC)	T 500 mA L 125 V DC	
					F3	0,5 A (DC)	T 500 mA L 125 V DC	
					F4	1,0 A (DC)	T 1A L 125 V DC	
					F5	1,0 A (DC)	T 1A L 125 V DC	
					F6	1,0 A (DC)	T 1A L 125 V DC	
					F7	1,0 A (DC)	T 1A L 125 V DC	
					F8	1,0 A (DC)	T 1A L 125 V DC	
4	Płytka drukowana zasilania	81204030-03	Miniatura	Ceramiczny	F1	—	Puste	
	115 V AC (PCB zasilania)		5 x 20 mm		F2	0,5 A	T 500 mA H 250 V	
					F3	1,0 A	T 1 A H 250 V	
					F4	2,5 A	T 2,50 A H 250 V	
					F5	3,15 A	T 3,15 A H 250 V	
					F6	0,5 A	T 500 mA H 250 V	
5	Płytka drukowana zasilania 230 V AC (PCB zasilania)	81204030-03	Miniatura 5 x 20 mm	Miniatura Ceramiczny 5 x 20 mm	F1	—	Puste	
					F2	0,5 A	T 500 mA H 250 V	
					F3	1,0 A	T 1A H 250 V	
					F4	1,6 A	T 1,60 A H 250 V	
					F5	2,0 A	T 2 A H 250 V	
							F6	0,5 A
6	Płyta główna (płyta główna)	81204022-09	Miniatura 5 x 20 mm	Szklany	F1	0,5 A (DC)	T 500 mA L 125 V DC	
7	Płytka drukowana we/wy	81204290-01	Miniatura	Szklany	F2	630 mA	T 630 mA H 250 V	
	NP (płytka INTP)		5 x 20 mm) mm	F4	1,0 A	T 1 A H 250 V	
					F6	1,0 A	T 1 A H 250 V	
8	Sygnałowa płytka	81204010-02	Miniatura	Szklany	F1	1,0 A (DC)	T 1 A L 125 V DC	
	drukowana		5 x 20 mm		F3	0,5 (DC)	T 500 mA L 125 V DC	
9	Płytka rozszerzenia strumienia	81204040-02	Miniatura 5 x 20 mm	Szklany	F1	1,0 A (DC)	T 1A L 125 V DC	

Tabela 2 Specyfikacje bezpieczników (ciąg dalszy)

Przycisk:

- A Ampery
- $\mathbf{F} \mathrm{Bezpiecznik}$
- H Wysokie przerwanie
- ID Identyfikacja
- L Niskie przerwanie
- $\mathbf{mA} \mathsf{Miliampery}$
- PCB Płytka drukowana
- T Opóźnienie czasowe (zwłoka)
- \mathbf{V} Wolty

1.7 Procedura wyłączania

Jeśli zasilanie analizatora będzie odłączone przez okres dłuższy niż 2 dni, zastosuj poniższą instrukcję przygotowania analizatora do wyłączenia i przechowywania. Wykonaj zadania w podanej kolejności.

Zadanie	Początkowe
Wybierz kolejno opcje OPERATION (OPERACJA) > START,STOP (URUCHOM, ZATRZYMAJ) > FINIS STOP (ZAKOŃCZ I ZATRZYMAJ) lub EMERGENCY STOP (ZATRZYMANIE AWARYJNE).	SH &
Poczekaj, aż na wyświetlaczu pojawi się komunikat "SYSTEM STOPPED (SYSTEM ZATRZYMANY)".	
Ze względów bezpieczeństwa należy usunąć odczynnik z przewodów odczynnika. Patrz Płukanie przew odczynników na stronie 10.	vodów
Odłącz złączki próbki od źródeł próbki. Podłącz złączki próbki do otwartego odpływu lub pustego plastik pojemnika.	cowego
Wykonaj następujące czynności:	
 Wybierz MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SIMULATE (SYMULACJA) > OXIDATION PHASE SIM (SYMULACJA FAZY UTLENIANIA) > CLEANING VALV (ZAWÓR CZYSZCZĄCY). Wybierz ON (WŁ.) aby otworzyć zawór czyszczący. Upewnij się, że dla każdego strumienia analizatora zawory ręczne oraz kalibracyjne są zamknięte. Wybierz SAMPLE PUMP (POMPA PRÓBEK), następnie wybierz REV (DO TYŁU) aby ustawić pon 	VE
w kierunku do tyłu. Pompa próbki powinna być uruchomiona w kierunku do tyłu aż linie próbki oraz odkraplacz na próbkę utlenioną będą puste.	
Odłącz zasilanie od analizatora.	

1.7.1 Płukanie przewodów odczynników

Narażenie na działanie substancji chemicznych. Stosować się do procedur bezpieczeństwa w laboratoriach i zakładać sprzęt ochrony osobistej, odpowiedni do używanych substancji chemicznych. Protokoły warunków bezpieczeństwa można znaleźć w aktualnych kartach charakterystyki (MSDS/SDS) materiałów.

Narażenie na działanie substancji chemicznych. Usuwać substancje chemiczne i odpady zgodnie z przepisami lokalnymi, regionalnymi i państwowymi.

Ze względów bezpieczeństwa należy usunąć odczynnik z przewodów odczynnika.

- Należy stosować środki ochrony osobistej wymienione w karcie charakterystyki (MSDS/SDS).
- Odłącz przewody od złączy ACID (KWAS), BASE (ZASADA) i HCL WATER (WODA Z HCL) z boku analizatora.
- Zablokuj złącza ACIS (KWAS), BASE (ZASADA) i HCL WATER (WODA Z HCL) do pojemnika na wodę dejonizowaną. Jeśli woda dejonizowana nie jest dostępna, użyj wody z kranu.
- Wybierz kolejno opcje: CALIBRATION (KALIBRACJA) > ZERO CALIBRATION (KALIBRACJA ZERA) > RUN REAGENTS PURGE (URUCHOM NAPEŁNIANIE ODCZYNNIKÓW), aby rozpocząć cykl oczyszczania.
- Wykonaj krok 4 drugi raz. Analizator zastąpi odczynniki w przewodach odczynników wodą.

- **6.** Po zakończeniu cyklu oczyszczania odczynników wyjmij przewody z pojemnika na wodę dejonizowaną i umieść je na wolnym powietrzu.
- 7. Wykonać krok 4 dwa razy.

Analizator zastąpi wodę w przewodach odczynników powietrzem.

2.1 Usterki systemu

Wybierz kolejno opcje OPERATION (OPERACJA) > FAULT ARCHIVE (ARCHIWUM USTEREK), aby wyświetlić zarejestrowane usterki systemu. Usterki i ostrzeżenia oznaczone gwiazdką (*) są aktywne.

Gdy w lewym górnym rogu ekranu Reaction Data (Dane reakcji) lub Reagent Status (Stan odczynnika) pojawi się komunikat "SYSTEM FAULT (USTERKA SYSTEMU)", wystąpiła usterka systemu. Pomiary zostały zatrzymane. Wyjścia 4–20 mA są ustawione na poziom usterki (domyślnie: 1 mA). Przekaźnik usterki systemu (przekaźnik 20) jest włączany.

Aby ponownie uruchomić analizator, wykonaj procedury usuwania usterek związanych z usterką systemu. Patrz Tabela 3. Aby potwierdzić usterkę, wybierz ją i naciśnij przycisk **•**.

Uwaga: Występują usterki systemu (np. 05_Pressure Test Fail (Niepowodzenie testu ciśnienia)), których użytkownik nie może potwierdzić. Te usterki są resetowane i potwierdzane automatycznie przez system po uruchomieniu systemu, ponownym uruchomieniu systemu lub usunięciu stanu usterki.

Komunikat	Opis	Przyczyna i rozwiązanie
01_LOW O2 FLOW - EX (NISKI PRZEPŁYW O2 NA WYDECHU)	Przepływ tlenu przez zawór (MV1) wydechowy (EX) był mniejszy niż 50% nastawy przepływu tlenu MFC (sterownika przepływu masy) przez czas dłuższy niż określony w ustawieniu LOW O2 FLOW TIME (CZAS NISKIEGO PRZEPŁYWU O2). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT SETUP (USTAWIENIA USTEREK) > LOW O2 FLOW TIME (CZAS NISKIEGO PRZEPŁYWU O2).	 Butla z tlenem jest pusta Problem z zasilaniem tlenem Niedrożność w układzie niszczenia ozonu Niedrożność w przewodzie za sterownikiem MFC Usterka lub niedrożność zaworu wydechowego Usterka sterownika MFC. Wykonaj test przepływu. Patrz Wykonywanie testu przepływu na stronie 29.
02_LOW O2 FLOW - SO (NISKI PRZEPŁYW O2 - WYLOT PRÓBKI)	Przepływ tlenu przez zawór wylotowy (SO) próbki (MV5) był mniejszy niż 50% nastawy MFC przez czas dłuższy niż określony w ustawieniu LOW O2 FLOW TIME (CZAS NISKIEGO PRZEPŁYWU O2). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT SETUP (USTAWIENIA USTEREK) > LOW O2 FLOW TIME (CZAS NISKIEGO PRZEPŁYWU O2).	 Butla z tlenem jest pusta Problem z zasilaniem tlenem Usterka lub niedrożność zaworu wylotowego próbek Usterka lub niedrożność zaworu wydechowego (MV1) Usterka sterownika MFC. Wykonaj test przepływu. Patrz Wykonywanie testu przepływu na stronie 29.

Tabela 3 Usterki systemu

Komunikat	Opis	Przyczyna i rozwiązanie
03_HIGH O2 FLOW (WYSOKI PRZEPŁYW O2)	Przepływ tlenu przez zawór wylotowy (MV1) był większy niż 50% nastawy MFC przez czas dłuższy niż określony w ustawieniu HIGH O2 FLOW TIME (CZAS WYSOKIEGO PRZEPŁYWU O2). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT SETUP (USTAWIENIA USTEREK) > HIGH O2 FLOW TIME (CZAS WYSOKIEGO PRZEPŁYWU O2).	 Usterka sterownika MFC Zbyt wysokie ciśnienie tlenu Problem z zasilaniem tlenem
04_NO REACTION (BRAK REAKCJI) (można ustawić jako usterkę lub ostrzeżenie)	Brak wartości szczytowej TOC (lub TC) CO ₂ , albo wartość szczytowa CO ₂ jest niższa od określonej w ustawieniu CO2 LEVEL (POZIOM CO2) przez trzy kolejne reakcje. Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > REACTION CHECK (KONTROLA REAKCJI) > CO2 LEVEL (POZIOM CO2).	 Nieprawidłowe stężenie odczynnika kwasowego i/lub odczynnika zasadowego. Pojemniki na odczynnik kwasowy i/lub odczynnik zasadowy są puste. Przewody odczynnika kwasowego i/lub zasadowego są niedrożne lub występują w nich pęcherzyki powietrza. Pompa kwasu i/lub pompa zasady działa nieprawidłowo. Pompa cyrkulacyjna działa nieprawidłowo.
05_PRESSURE TEST FAIL (NIEPOWODZENIE TESTU CIŚNIENIA)	Przepływ sterownika MFC podczas testu ciśnienia nie spadł do wartości niższej niż określona w ustawieniu PRESSURE TEST FAULT (USTERKA TESTU CIŚNIENIA). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU) > PRESSURE TEST FAULT (USTERKA TESTU CIŚNIENIA).	 Wyciek gazu i/lub cieczy w analizatorze. Zawór jest nieszczelny. Sprawdź szczelność zaworu wylotowego próbek, zaworu do pobierania próbek (ARS) i złączek analizatora. Sprawdź pompę cyrkulacyjną pod kątem wycieków.
06_PRESSURE CHCK FAIL (NIEPOWODZENIE KONTROLI CIŚNIENIA)	Przepływ sterownika MFC nie zmniejszył się do wartości niższej niż określona w ustawieniu PRESSURE CHCK FAULT (USTERKA KONTROLI CIŚNIENIA) podczas kontroli ciśnienia przez trzy kolejne reakcje (domyślnie). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU) > PRESSURE CHCK FAULT (USTERKA KONTROLI CIŚNIENIA).	

Tabela 3 Usterki systemu (ciąg dalszy)

Komunikat	Opis	Przyczyna i rozwiązanie
08_RELAY PCB FAULT(USTERKA PCB PRZEKAŹNIKA)	 81204001 bezpiecznik na płytce przekaźników jest przepalony. 81204010 bezpiecznik na płytce sygnałowej jest przepalony, F3. Nieprawidłowe działanie zasilacza 24 V. 	Sprawdź napięcie wejściowe 24 V DC. Sprawdź bezpieczniki na płytce przekaźników. Umiejscowienie przedstawia Elementy obudowy sterowniczej na stronie 47. Sprawdź bezpiecznik F3 na płytce sygnałowej. Po usunięciu usterki gaśnie dioda LED 6 na płytce sygnałowej.
09_OZONE PCB FAULT (USTERKA PCB OZONU)	Nieprawidłowe działanie płytki ozonu.	Wymienić płytkę ozonu. Skontaktuj się z działem pomocy technicznej.
10_N/P PCB FAULT (USTERKA PCB N/P)	Nieprawidłowe działanie zasilacza 24 V. Przepalony bezpiecznik F2, F4 lub F6 na płytce wejścia/wyjścia fosforu azotowego (płytka we/wy NP 81204290).	Sprawdź napięcie wejściowe 24 V DC na płytce we/wy NP (81204290). Umiejscowienie przedstawia Elementy obudowy sterowniczej na stronie 47. Sprawdź bezpieczniki F2, F4 i F6 na płytce we/wy NP. Po usunięciu usterki gasną diody LED L1, L4 i L6.
11_CO2 ANALYZER FAULT (USTERKA ANALIZATORA CO2)	Nieprawidłowe działanie analizatora CO ₂ .	Sprawdź zasilanie wejściowe 24 V DC do analizatora CO ₂ z płyty głównej (przewody 101 i 102). Umiejscowienie przedstawia Elementy obudowy sterowniczej na stronie 47.
		Sprawdź sygnał z analizatora CO ₂ . Otwórz analizator CO ₂ i wyczyść soczewki.
		Wyłącz, a następnie włącz zasilanie analizatora.
		Więcej informacji na temat testów znajduje się w arkuszu informacyjnym <i>T019. BioTector CO₂</i> <i>Analyzer Troubleshooting</i> .
12_HIGH CO2 IN O2 (WYSOKA ZAWARTOŚĆ CO2 W O2)	Wysoki poziom CO ₂ w gazowym tlenie na włocie.	Wybierz kolejno opcje MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SIMULATE (SYMULACJA) > OXIDATION PHASE SIM (SYMULACJA FAZY UTLENIANIA).MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)SIMULATE (SYMULACJA)OXIDATION PHASE SIM (SYMULACJA FAZY UTLENIANIA) Jeżeli wartość CO ₂ na wyświetlaczu jest większa niż od 250 do 300 ppm, należy sprawdzić czystość tlenu. Sprawdź dopływ tlenu i koncentrator tlenu, jeśli ma to zastosowanie. Sprawdź, czy dopływ tlenu nie jest zanieczyszczony CO ₂ . Patrz temat <i>Examine the oxygen supply</i> (<i>Sprawdzanie podawania tlenu</i>) w Instrukcji obsługi i instalacji.
		Jesii czystosc tienu jest wystarczająca, otworz analizator CO ₂ i wyczyść soczewki. Jeśli problem nie ustąpi, wymień filtry analizatora CO ₂ .

Tabela 3 Usterki systemu (ciąg dalszy)

Komunikat	Opis	Przyczyna i rozwiązanie
13_SMPL VALVE SEN SEQ (KOLEJNOŚĆ CZUJNIKA ZAWORU PRÓBEK)	Czujniki zaworu próbek mają nieprawidłową kolejność. Czujniki zaworu próbek powinny występować w kolejności: 1, 2 i 3.	Sprawdź, czy wystąpiły usterki 14_SAMPLE VALVE SEN1 (ZAWÓR PRÓBEK SEN1), 15_SAMPLE VALVE SEN2 (ZAWÓR PRÓBEK SEN2) lub 16_SAMPLE VALVE SEN3 (ZAWÓR PRÓBEK SEN3) Sprawdź bezpiecznik F6 na płytce drukowanej przekaźników. Wybierz kolejno opcje MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SAMPLE VALVE (ZAWÓR PRÓBEK). Sprawdź działanie
		zaworu próbek. Sprawdź przewody czujnika zaworu próbek.
14_SAMPLE VALVE SEN1 (ZAWÓR PRÓBEK SEN1) 15_SAMPLE VALVE SEN2 (ZAWÓR PRÓBEK SEN2) 16_SAMPLE VALVE SEN3 (ZAWÓR PRÓBEK SEN3)	Czujnik zaworu próbek 1, 2 lub 3 nie pokazuje położenia zaworu.	Sprawdź bezpiecznik F6 na płytce drukowanej przekaźników. Działanie czujników zaworów próbek jest nieprawidłowe lub występuje problem z orientacją. Sprawdź przewody na płytce zaworów i na płytce sygnałowej. Umiejscowienie przedstawia Elementy obudowy sterowniczej na stronie 47. Sprawdź sygnały czujników. Sprawdź diody LED 12, 13 i 14 na płytce sygnałowej oraz sygnały DI01, DI02 i DI03 w menu DIGITAL INPUT (WEJŚCIE CYFROWE). Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA) > DIGITAL INPUT (WEJŚCIE CYFROWE). Umiejscowienie płytki można sprawdzić w części Elementy obudowy sterowniczej na stronie 47.
17_SMPL VALVE NOT SYNC (ZAWÓR PRÓBKOWY NIE JEST ZSYNCHRONIZOWANY)	Prawidłowe położenie czujnika (czujnik 1) nie zostało zidentyfikowane w zaworze próbek podczas pracy pompy próbek.	Wymień przekaźnik 4 na płytce przekaźników. Umiejscowienie przedstawia Elementy obudowy sterowniczej na stronie 47. Sprawdź sygnał czujnika. Sprawdź diodę LED 12 na płycie sygnałowej i sygnał DI01 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA) > DIGITAL INPUT (WEJŚCIE CYFROWE). Umiejscowienie płytki można sprawdzić w części Elementy obudowy sterowniczej na stronie 47.
18_LIQUID LEAK DET (WYKRYWACZ WYCIEKÓW CIECZY)	Wykrywacz wycieków cieczy w analizatorze jest aktywny. Wystąpił wyciek cieczy.	Sprawdź, czy w obudowie analizatora nie ma wycieku cieczy. Odłącz złącze wykrywacza wycieków na spodzie reaktora, aby sprawdzić, czy w reaktorze wystąpił wyciek. Sprawdź wykrywacz wycieków cieczy.

Tabela 3 Usterki systemu (ciąg dalszy)

Komunikat	Opis	Przyczyna i rozwiązanie
19_DCP LIQ LEAK DET (WYKRYTO WYCIEK CIECZY W DCP)	Wykrywacz wycieków cieczy z fotometru dwuogniwowego (DCP) jest aktywny.	Sprawdź, czy w fotometrze dwuogniwowym nie ma wycieku cieczy. Sprawdź działanie wykrywacza wycieków cieczy z fotometru dwuogniwowego.
20_NO REAGENTS (BRAK ODCZYNNIKÓW) (można ustawić jako usterkę, ostrzeżenie lub powiadomienie)	Obliczone poziomy odczynników wskazują, że pojemniki z odczynnikami są puste.	Wymień odczynniki. Patrz Napełnianie lub wymiana odczynników na stronie 6.

Tabela 3 Usterki systemu (ciąg dalszy)

2.2 Ostrzeżenia systemu

Wybierz kolejno opcje OPERATION (OPERACJA) > FAULT ARCHIVE (ARCHIWUM USTEREK), aby wyświetlić zarejestrowane ostrzeżenia. Usterki i ostrzeżenia oznaczone gwiazdką (*) są aktywne.

Gdy w lewym górnym rogu ekranu Reaction Data (Dane reakcji) lub Reagent Status (Stan odczynnika) pojawi się komunikat "SYSTEM WARNING (OSTRZEŻENIE SYSTEMOWE)", oznacza to, że wystąpiło ostrzeżenie. Pomiary są kontynuowane. Wyjścia 4-20 mA nie zmieniają się. Przekaźnik usterki systemu (przekaźnik 20) nie jest włączony.

Wykonaj procedury usuwania usterek związanych z tym ostrzeżeniem. Patrz Tabela 4. Aby potwierdzić ostrzeżenie, wybierz ostrzeżenie i naciśnij przycisk **イ**.

Jeśli występuje wiele ostrzeżeń, sprawdź bezpieczniki na płytce przekaźników i płytce sygnałowej.

Komunikat	Opis	Przyczyna i rozwiązanie
21_CO2 ANL LENS DIRTY (ZANIECZYSZCZONA SOCZEWKA ANL CO2)	Urządzenie optyczne analizatora CO ₂ jest zabrudzone.	Wyczyść analizator CO ₂ . Wyczyść soczewki w analizatorze CO ₂ .
22_FLOW WARNING – EX (OSTRZEŻENIE O PRZEPŁYWIE – WYDECH)	Podczas testu ciśnienia przepływ tlenu przez zawór (MV1) wydechowy (EX) zmniejszył się do poziomu niższego niż wartość ustawienia FLOW WARNING (OSTRZEŻENIE O PRZEPŁYWIE). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU) > FLOW WARNING (OSTRZEŻENIE O PRZEPŁYWIE).	 Butla z tlenem jest pusta Problem z zasilaniem tlenem Niedrożność w układzie niszczenia ozonu Niedrożność w przewodzie za sterownikiem przepływu masy (MFC) Usterka lub niedrożność zaworu wydechowego Usterka sterownika MFC. Wykonaj test przepływu. Patrz Wykonywanie testu przepływu na stronie 29.

Tabela 4 Ostrzeżenia systemu

Komunikat	Opis	Przyczyna i rozwiązanie
23_FLOW WARNING – SO (OSTRZEŻENIE O PRZEPŁYWIE – WYLOT PRÓBKI)	Podczas testu ciśnienia przepływ tlenu przez zawór wylotowy pobierania próbek (MV5) zmniejszył się do poziomu niższego niż wartość ustawienia FLOW WARNING (OSTRZEŻENIE O PRZEPŁYWIE). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU) > FLOW WARNING (OSTRZEŻENIE O PRZEPŁYWIE).	 Butla z tlenem jest pusta Problem z zasilaniem tlenem Usterka lub niedrożność zaworu wylotowego próbek Niedrożność w przewodzie za sterownikiem MFC Usterka sterownika MFC. Wykonaj test przepływu. Patrz Wykonywanie testu przepływu na stronie 29.
26_PRESSURE TEST WARN (OSTRZEŻENIE O TEŚCIE CIŚNIENIA)	Przepływ sterownika MFC podczas testu ciśnienia nie spadł do wartości niższej niż określona w ustawieniu PRESSURE TEST WARN (OSTRZEŻENIE O TEŚCIE CIŚNIENIA). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU) > PRESSURE TEST WARN (OSTRZEŻENIE O TEŚCIE CIŚNIENIA).	 Wyciek gazu i/lub cieczy w analizatorze. Zawór jest nieszczelny. Sprawdź szczelność zaworu wylotowego próbek, zaworu do pobierania próbek (ARS) i złączek analizatora. Sprawdź pompę cyrkulacyjną pod kątem wycieków. Wykonaj test ciśnienia. Patrz Wykonywanie testu ciśnienia na stronie 29.
28_NO PRESSURE TEST (BRAK TESTU CIŚNIENIA)	Test ciśnienia nie został wykonany podczas sekwencji uruchamiania systemu. Uwaga: Ostrzeżenie pozostaje aktywne do czasu pomyślnego przeprowadzenia testu ciśnienia.	Analizator został uruchomiony przy użyciu funkcji szybkiego uruchomienia. Naciśnięcie przycisku STRZAŁKI W PRAWO po wybraniu opcji START (ROZPOCZNIJ).
29_PRESSURE TEST OFF (TEST CIŚNIENIA WYŁĄCZONY)	Funkcje codziennego testu ciśnienia i testu przepływu są wyłączone.	Włącz funkcje testu ciśnienia i testu przepływu w menu MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU).

Komunikat	Opis	Przyczyna i rozwiązanie
30_TOC SPAN CAL FAIL (BŁĄD KALIBRACJI ZAKRESU TOC) 31_TIC SPAN CAL FAIL (BŁĄD KALIBRACJI ZAKRESU TIC)	Wynik kalibracji zakresu TIC lub TOC nie mieści się w granicach ustawienia zakresu TIC BAND (PASMO TIC) lub TOC BAND (PASMO TOC). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > SPAN PROGRAM (PROGRAM ZAKRESU) > TIC BAND (PASMO TIC) lub TOC BAND (PASMO TOC).	Upewnij się, że stężenie przygotowanego roztworu wzorcowego jest prawidłowe. Upewnij się, że ustawienia w menu CALIBRATION (KALIBRACJA) > SPAN CALIBRATION (KALIBRACJA ZAKRESU) są prawidłowe. Sprawdź działanie analizatora.
33_TOC SPAN CHCK FAIL (BŁĄD KONTROLI ZAKRESU TOC) 34_TIC SPAN CHCK FAIL (BŁĄD KONTROLI ZAKRESU TIC)	Wynik kontroli zakresu TIC lub TOC nie mieści się w granicach ustawienia zakresu TIC BAND (PASMO TIC) lub TOC BAND (PASMO TOC). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > SPAN PROGRAM (PROGRAM ZAKRESU) > TIC BAND (PASMO TIC) lub TOC BAND (PASMO TOC).	
36_TN SPAN CAL FAIL (BŁĄD KALIBRACJI ZAKRESU TN) 37_TP SPAN CAL FAIL (BŁĄD KALIBRACJI ZAKRESU TP)	Wynik kalibracji zakresu TN lub TP nie mieści się w granicach ustawienia zakresu TN BAND (PASMO TN) lub TP BAND (PASMO TP). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > SPAN PROGRAM (PROGRAM ZAKRESU) > TN BAND (PASMO TN) lub TP BAND (PASMO TP).	Upewnij się, że stężenie przygotowanego roztworu wzorcowego jest prawidłowe. Upewnij się, że ustawienia w menu CALIBRATION (KALIBRACJA) > SPAN CALIBRATION (KALIBRACJA ZAKRESU) są prawidłowe. Sprawdź działanie analizatora.
39_TN SPAN CHCK FAIL (BŁĄD KONTR ZAKRESU TN) 40_TP SPAN CHCK FAIL (BŁĄD KONTROLI ZAKRESU TP)	Wynik kontroli zakresu TN lub TP nie mieści się w granicach ustawienia zakresu TN BAND (PASMO TN) lub TP BAND (PASMO TP). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > SPAN PROGRAM (PROGRAM ZAKRESU) > TN BAND (PASMO TN) lub TP BAND (PASMO TP).	

Komunikat	Opis	Przyczyna i rozwiązanie
44_TN ZERO CAL FAIL (BŁĄD KALIBRACJI ZERA TN) 45_TP ZERO CAL FAIL (BŁĄD KALIBRACJI ZERA TP)	Wynik kalibracji zera TN lub TP nie mieści się w granicach ustawienia TN BAND (PASMO TN) lub TP BAND (PASMO TP). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > ZERO PROGRAM (PROGRAM ZERA) > TN BAND (PASMO TN) lub TP BAND (PASMO TP).	Upewnij się, że woda dejonizowana jest podłączona do złączki ZERO WATER (WODA DO ZEROWANIA) po prawej stronie analizatora. Sprawdź stabilność reakcji zerowych i jakość odczynników. Upewnij się, że ustawienia w menu MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > ZERO PROGRAM (PROGRAM ZERA) są prawidłowe. Sprawdź działanie analizatora. Ponownie wykonaj kalibrację zera. Wybierz kolejno opcje CALIBRATION (KALIBRACJA) > ZERO
47_TN ZERO CHCK FAIL (BŁĄD KONTR ZERA TN) 48_TP ZERO CHCK FAIL (BŁĄD KONTROLI ZERA TP)	Wynik kontroli zera TN lub TP nie mieści się w granicach ustawienia zakresu TN BAND (PASMO TN) lub TP BAND (PASMO TP). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > ZERO PROGRAM (PROGRAM ZERA) > TN BAND (PASMO TN) lub TP BAND (PASMO TP).	CALIBRATION (KALIBRACJA ZERÁ) > RUN ZERO CALIBRATION (WYKONAJ KALIBRACJĘ ZERA).
50_TIC OVERFLOW (PRZELEW TIC)	Odczyt TIC na końcu analizy TIC jest większy niż wartość ustawienia TIC CHECK (KONTROLA TIC). Dodatkowo odczyt TIC jest większy niż wartość ustawienia TIC CHECK (KONTROLA TIC) po wydłużeniu czasu wypłukiwania TIC o 300 sekund. Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > REACTION CHECK (KONTROLA REAKCJI) > TIC CHECK (KONTROLA TIC).	Niezwykle wysoka wartość TIC. Sprawdź zakresy robocze w menu OPERATION (OPERACJA) > SYSTEM RANGE DATA (DANE ZAKRESU SYSTEMU).OPERATION (OPERACJA)SYSTEM RANGE DATA (DANE ZAKRESU SYSTEMU) Zmień zakres operacji (np. z 1 na 2) w menu MAINTENANCE (KONSERWACJA) > COMMISSIONING (PRZYGOTOWANIE DO EKSPLOATACJI) > STREAM PROGRAM (PROGRAM STRUMIENIA), aby zmniejszyć objętość próbki dodanej do reaktora. Zwiększ wartość ustawienia TIC SPARGE TIME (CZAS WYPLUKIWANIA TIC). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > OXIDATION PROGRAM (PROGRAM UTLENIANIA) 1 > TIC SPARGE TIME (CZAS WYPLUKIWANIA TIC).

Komunikat	Opis	Przyczyna i rozwiązanie
51_TOC OVERFLOW (PRZELEW TOC)	Odczyt TOC na końcu analizy TIC jest większy niż wartość ustawienia TOC CHECK (KONTROLA TOC), nawet po wydłużeniu czasu wypłukiwania TOC o 300 sekund. Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > REACTION CHECK (KONTROLA REAKCJI) > TOC CHECK (KONTROLA TOC).	Niezwykle wysoka wartość TOC. Sprawdź zakresy robocze w menu OPERATION (OPERACJA) > SYSTEM RANGE DATA (DANE ZAKRESU SYSTEMU).OPERATION (OPERACJA)SYSTEM RANGE DATA (DANE ZAKRESU SYSTEMU) Zmień zakres operacji (np. z 1 na 2) w menu MAINTENANCE (KONSERWACJA) > COMMISSIONING (PRZYGOTOWANIE DO EKSPLOATACJI) > STREAM PROGRAM (PROGRAM STRUMIENIA), aby zmniejszyć objętość próbki dodanej do reaktora. Zwiększ wartość ustawienia TOC SPARGE TIME (CZAS WYPLUKIWANIA TOC). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > OXIDATION PROGRAM (PROGRAM UTLENIANIA) 1 > TOC SPARGE TIME (CZAS WYPLUKIWANIA TOC).
52_HIGH CO2 IN BASE (WYSOKA ZAWARTOŚĆ CO2 W ZASADZIE)	Poziom CO ₂ w odczynniku zasadowym jest większy niż wartość ustawienia BASE CO2 ALARM (ALARM CO2 ZASADY). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT SETUP (USTAWIENIA USTEREK) > BASE CO2 ALARM (ALARM CO2 ZASADY). Uwaga: Poziom CO ₂ w odczynniku zasadowym jest identyfikowany podczas kalibracji zera lub kontroli zera.	Upewnij się, że filtr CO ₂ w pojemniku z odczynnikiem zasadowym jest w dobrym stanie. Upewnij się, że pojemnik z odczynnikiem zasadowym jest szczelny. Określ jakość odczynnika zasadowego. Wymień odczynnik zasadowy.
53_TEMPERATURE ALARM (ALARM TEMPERATURY)	Temperatura analizatora jest wyższa niż wartość ustawienia TEMPERATURE ALARM (ALARM TEMPERATURY). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT SETUP (USTAWIENIA USTEREK) > TEMPERATURE ALARM (ALARM TEMPERATURE ALARM (ALARM TEMPERATURY). Uwaga: Wentylator analizatora pracuje w trybie rezerwowym do momentu potwierdzenia ostrzeżenia.	Określ temperaturę wewnątrz analizatora. Sprawdź filtry w wentylatorze i nawiewie. Sprawdź działanie wentylatora. Uwaga: Przy temperaturze poniżej 25°C (77°F) analizator wyłącza wentylator.
54_COOLER LOW TEMP (NISKA TEMPERATURA CHŁODNICY)	Temperatura chłodnicy jest niższa niż 2°C przez ponad 600 sekund.	Sprawdź migającą diodę LED 3 na płytce sygnałowej, aby sprawdzić działanie chłodnicy. Nieprawidłowe działanie czujnika temperatury. Wymiana chłodnicy.

Komunikat	Opis	Przyczyna i rozwiązanie
55_COOLER HIGH TEMP (WYSOKA TEMPERATURA CHŁODNICY)	Temperatura chłodnicy jest o 5°C (9°F) wyższa od nastawy temperatury chłodnicy i o ponad 8°C (14°F) niższa od temperatury otoczenia przez ponad 600 sekund.	Sprawdź migającą diodę LED 3 na płytce sygnałowej, aby sprawdzić działanie chłodnicy. Nieprawidłowe działanie czujnika temperatury lub elementu Peltiera chłodnicy. Sprawdź, czy prąd płynący do ogniwa Peltiera ma natężenie około 1,4 A. Jeśli nie, wymień chłodnicę. Więcej informacji na temat testów znajduje się w arkuszu informacyjnym <i>T022. BioTector Cooler</i> <i>Troubleshooting</i> .
56_TP BOIL HI TEMP (WYSOKA TEMPERATURA KOTŁA TP)	Temperatura kotła TP była wyższa niż limit temperatury przez okres dłuższy niż limit czasu określony w ustawieniu TP BOILER ALARM (ALARM KOTŁA TP). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > BOILER PROGRAM (PROGRAM KOTŁA) > TP BOILER ALARM (ALARM KOTŁA TP).	Nieprawidłowe działanie czujnika temperatury na kotle TP. Nieprawidłowe działanie przekaźnika na płytce transformatora kotła TP.
57_TP BOIL LO TEMP (NISKA TEMPERATURA KOTŁA TP)	Temperatura kotła TP była niższa niż wartość graniczna przez okres dłuższy niż limit czasu określony w ustawieniu TP BOILER ALARM (ALARM KOTŁA TP). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > BOILER PROGRAM (PROGRAM KOTŁA) > TP BOILER ALARM (ALARM KOTŁA TP).	
58_TP BOILER FAULT (USTERKA KOTŁA TP)	Temperatura kotła TP nie mieściła się w granicach temperatury przez ponad 120 sekund podczas pracy. Wartości graniczne temperatury są niższe niż 10°C lub wyższe niż 115°C.	Nieprawidłowe działanie czujnika temperatury na kotle TP. Nieprawidłowe działanie przekaźnika na płytce transformatora kotła TP. Sprawdź zasilanie podgrzewacza kotła TP.

Komunikat	Opis	Przyczyna i rozwiązanie
59_TPr BOIL HI TEMP (WYSOKA TEMPERATURA KOTŁA TPr)	Temperatura kotła TPr była wyższa niż limit temperatury przez okres dłuższy niż limit czasu określony w ustawieniu TPr BOILER ALARM (ALARM KOTŁA TPr). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > BOILER PROGRAM (PROGRAM KOTŁA) > TPr BOILER ALARM (ALARM KOTŁA TPr).	Nieprawidłowe działanie czujnika temperatury na kotle TPr. Nieprawidłowe działanie przekaźnika U12 na płycie we/wy NP (81204290).
60_TPr BOIL LO TEMP (NISKA TEMPERATURA KOTŁA TPr)	Temperatura kotła TPr była niższa niż limit temperatury przez okres dłuższy niż limit czasu określony w ustawieniu TPr BOILER ALARM (ALARM KOTŁA TPr). Patrz MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > BOILER PROGRAM (PROGRAM KOTŁA) > TPr BOILER ALARM (ALARM KOTŁA TPr).	
61_TPr BOILER FAULT (USTERKA KOTŁA TPr)	Temperatura kotła TPr nie mieściła się w granicach temperatury przez ponad 120 sekund podczas pracy. Wartości graniczne temperatury są niższe niż 10°C lub wyższe niż 115°C.	Nieprawidłowe działanie czujnika temperatury na kotle TP. Nieprawidłowe działanie przekaźnika U12 na płycie we/wy NP (81204290). Sprawdź zasilanie podgrzewacza kotła TPr.
62_SMPL PUMP STOP ON (ZATRZYMANIE POMPY PRÓBEK W POZYCJI ON)	Pompa próbek zatrzymała się przy włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone). WŁ. = dioda LED 15 świeci (płytka sygnałowa)	Sprawdź obroty pompy próbek. Wymień przekaźnik 2 na płytce przekaźników. Sprawdź sygnał czujnika pompy. DIGITAL INPUT (WEJŚCIE CYFROWE)DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz KONSERWACJA > DIAGNOSTYKA > STATUS WEJŚCIA/WYJŚCIA >
63_SMPL PUMP STOP OFF (ZATRZYMANIE POMPY PRÓBEK W POZYCJI OFF)	Pompa próbek zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (obroty nie są wykrywane). WYŁ. = dioda LED 15 jest wyłączona (płytka sygnałowa)	WEJŚCIE CYFROWE.MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT (WEJŚCIE CYFROWE) Wymień pompę do pobierania próbek. Patrz Części zamienne i akcesoria na stronie 49 Więcej informacji na temat testów znajduje się w arkuszu informacyjnym <i>TT001. BioTector Sample</i> <i>Pump Stop On and Off Warning_Quick</i> <i>Troubleshooting</i> .

Komunikat	Opis	Przyczyna i rozwiązanie
64_ACID PUMP STOP ON (ZATRZYMANIE POMPY KWASU W POZYCJI ON)	Pompa kwasu zatrzymała się przy włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone). WŁ. = dioda LED 16 świeci (płytka sygnałowa)	Sprawdź obroty pompy kwasu. Sprawdź sygnał czujnika pompy. Sprawdź diodę LED 16 na płycie sygnałowej i sygnał DI05 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz KONSERWACJA > DIAGNOSTYKA > STATUS WEJŚCIA/WYJŚCIA > WEJŚCIE
65_ACID PUMP STOP OFF (ZATRZYMANIE POMPY KWASU W POZYCJI OFF)	Pompa kwasu zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (obroty nie są wykrywane). WYŁ. = dioda LED 16 jest wyłączona (płytka sygnałowa)	CYFROWE.MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT (WEJŚCIE CYFROWE) Wymień pompę.
66_BASE PUMP STOP ON (ZATRZYMANIE POMPY ZASADY W POZYCJI ON)	Pompa zasady zatrzymała się przy włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone). WŁ. = dioda LED 17 świeci (płytka sygnałowa)	Sprawdź obroty pompy zasady. Sprawdź sygnał czujnika pompy. Sprawdź diodę LED 17 na płycie sygnałowej i sygnał DI06 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz KONSERWACJA > DIAGNOSTYKA > STATUS WEJŚCIA/WYJŚCIA > WEJŚCIE
67_BASE PUMP STOP OFF (ZATRZYMANIE POMPY ZASADY W POZYCJI OFF)	Pompa zasady zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (obroty nie są wykrywane). WYŁ. = dioda LED 17 jest wyłączona (płytka sygnałowa)	(KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT (WEJŚCIE CYFROWE) Wymień pompę.
68_N PUMP STOP ON (ZATRZYMANIE POMPY N WŁĄCZONE)	Pompa azotu zatrzymała się przy włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone). WŁ. = dioda LED 8 świeci (płytka we/wy NP)	Sprawdź obroty pompy azotu (N). Wymień przekaźnik 1 na płytce we/wy NP. Sprawdź sygnał czujnika pompy. Sprawdź diodę LED 8 na płycie we/wy NP i sygnał DI33 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz KONSERWACJA > DIAGNOSTYKA > STATUS
69_N PUMP STOP OFF (ZATRZYMANIE POMPY N WYŁĄCZONE)	Pompa azotu zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (obroty nie są wykrywane). WYŁ. = dioda LED 8 nie świeci (płytka we/wy NP)	WEJŚCIA/WYJŚCIA > WEJŚCIE CYFROWE.MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT (WEJŚCIE CYFROWE) Wymień pompę.
70_P PUMP STOP ON (ZATRZYMANIE POMPY P W POZYCJI ON)	Pompa fosforu zatrzymała się przy włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone). WŁ. = dioda LED 9 świeci (płytka we/wy NP)	Sprawdź obroty pompy fosforu (P). Wymień przekaźnik 3 na płytce we/wy NP. Sprawdź sygnał czujnika pompy. Sprawdź diodę LED 8 na płycie we/wy NP i sygnał DI34 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz KONSERWACJA > DIAGNOSTYKA > STATUS
71_P PUMP STOP OFF (ZATRZYMANIE POMPY P WYŁĄCZONE)	Pompa fosforu zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (obroty nie są wykrywane). WYŁ. = dioda LED 9 nie świeci (płytka we/wy NP)	WEJSCIA/WYJSCIA > WEJŚCIE CYFROWE.MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT (WEJŚCIE CYFROWE) Wymień pompę.

Tabela 4 Ostrzeżenia systemu (ciąg dalszy)

Komunikat	Opis	Przyczyna i rozwiązanie
72_P RGNT PUMP STOP ON (WŁĄCZONE ZATRZYMANIE POMPY ODCZYNNIKA P) 73_P RGNT PUMP STOP OFF (WYŁĄCZONE ZATRZYMANIE POMPY	Pompa odczynnika TP zatrzymała się przy włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone). WŁ. = dioda LED 11 świeci (płytka we/wy NP) Pompa odczynnika TP zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest	Sprawdź obroty pompy odczynnika TP. Sprawdź sygnał czujnika pompy. Sprawdź diodę LED 11 na płycie we/wy NP i sygnał DI36 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz KONSERWACJA > DIAGNOSTYKA > STATUS WEJŚCIA/WYJŚCIA > WEJŚCIE CYFROWE.MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT
ODCZYNNIKA P)	nieprawidłowe (obroty nie są wykrywane). WYŁ. = dioda LED 11 nie świeci (płytka we/wy NP)	(WEJŚCIE CYFROWE) Wymień pompę.
74_HCI PUMP STOP	Pompa kwasu HCl zatrzymała się przy	Sprawdź obroty pompy kwasu HCI.
ON (ZATRZYMANIE POMPY HCL W POZYCJI ON)	włączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (stale włączone).	Sprawdź sygnał czujnika pompy. Sprawdź diodę LED 12 na płycie we/wy NP i sygnał DI37 w menu DIGITAL INPUT (WEJŚCIE CYFROWE) Patrz
75_HCI PUMP STOP OFF (WYŁĄCZONE ZATRŻYMANIE POMPY HCI)	WŁ. = dioda LED 12 świeci (płytka we/wy NP)	KONSERWACJA > DIAGNOSTYKA > ŠTATUS WEJŚCIA/WYJŚCIA > WEJŚCIE CYEDOWE MAINTENANCE
	Pompa kwasu HCl zatrzymała się przy wyłączonym czujniku obrotów lub działanie czujnika obrotów jest nieprawidłowe (obroty nie są wykrywane).	CYFROWE.MAINTENANCE (KONSERWACJA)DIAGNOSTICS (DIAGNOSTYKA)INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)DIGITAL INPUT (WEJŚCIE CYFROWE) Wymień pompę.
	WYŁ. = dioda LED 12 nie świeci (płytka we/wy NP)	
76_DCP WARN (OSTRZEŻENIE DCP)	Analizator nie może komunikować się z fotometrem dwuogniwowym (DCP).	Sprawdź zasilanie fotometru dwuogniwowego. Upewnij się, że diody LED na płytce DCP świecą. Sprawdź połączenia kabla danych DCP.
77_DCP N SIG WARN (OSTRZEŻENIE	Wartości w kanale SIGNAL/REFERENCE (SYGNAŁ/ODNIESIENIE) azotu dla wody	Upewnij się, że woda dejonizowana TN DI nie jest zanieczyszczona.
SYGNAŁU N DCP)	TN DI są poza zakresem fabrycznym.	Sprawdź działanie lampy ksenonowej.
78_DCP N REF WARN (OSTRZEŻENIE WARTOŚCI ODNIESIENIA N DCP)		Oczyścić ogniwo pomiarowe TN.
		Sprawdź kable koncentryczne fotometru dwuogniwowego.
		Uruchom READ DIW REF TEST (TEST ODCZYTU ODNIESIENIA WODY DEJONIZOWANEJ), aby sprawdzić wartości SIGNAL/REFERENCE (SYGNAŁ/ODNIESIENIE). Patrz MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > READ DIW REF TEST (TEST ODCZYTU ODNIESIENIA WODY DEJONIZOWANEJ).

Komunikat	Opis	Przyczyna i rozwiązanie	
79_DCP P SIG WARN (OSTRZEŻENIE SYGNAŁU P DCP) 80_DCP P REF WARN (OSTRZEŻENIE ODNIESIENIA P DCP)	Wartości w kanale SIGNAL/REFERENCE (SYGNAŁ/ODNIESIENIE) fosforu dla wody TN DI są poza zakresem fabrycznym.	Upewnij się, że woda dejonizowana TN DI nie jest zanieczyszczona. Sprawdź działanie lampy ksenonowej. Oczyścić ogniwo pomiarowe TP. Sprawdź kable koncentryczne fotometru dwuogniwowego. Uruchom READ DIW REF TEST (TEST ODCZYTU ODNIESIENIA WODY DEJONIZOWANEJ), aby sprawdzić wartości SIGNAL/REFERENCE (SYGNAŁ/ODNIESIENIE). Patrz MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > READ DIW REF TEST (TEST ODCZYTU ODNIESIENIA WODY DEJONIZOWANEJ).	
81_ATM PRESSURE HIGH (WYSOKIE CIŚNIENIE ATM)	Odczyt czujnika ciśnienia atmosferycznego jest większy niż 115 kPa. Odczyt czujnika ciśnienia atmosferycznego jest ustawiony na 101,3 kPa (tryb pracy w razie usterki).	Sprawdź ADC[8] w menu ANALOG INPUT (WEJŚCIE ANALOGOWE). Patrz MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA) > ANALOG INPUT	
82_ATM PRESSURE LOW (NISKIE CIŚNIENIE ATM)	Odczyt czujnika ciśnienia atmosferycznego jest mniejszy niż 60 kPa. Odczyt czujnika ciśnienia atmosferycznego jest ustawiony na 101,3 kPa (tryb pracy w razie usterki).	(WEJSCIE ANALOGOWE). Odczyt powinien wynosić około 4 V. Nieprawidłowe działanie czujnika ciśnienia. Wymień płytę główną. Patrz Części zamienne i akcesoria na stronie 49	
83_SERVICE TIME (CZAS SERWISU)	Konieczna jest obsługa ((180-dniowy okres międzyobsługowy)	Wykonaj niezbędne czynności serwisowe. Następnie wyzeruj licznik serwisowy, aby potwierdzić ostrzeżenie. Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SERVICE (SERWIS) > RESET SERVICE COUNTER (RESET LICZNIKA SERWISOWEGO).	
84_SAMPLER ERROR (BŁĄD PRÓBNIKA)	W próbniku nie ma próbki/jest mała ilość próbki lub występuje niskie ciśnienie/brak ciśnienia.	Więcej informacji na ten temat można znaleźć na ekranie LCD próbnika. Patrz instrukcja obsługi próbnika.	
114_I/O WARNING (OSTRZEŻENIE WE/WY)	Podczas okresowych kontroli wykonywanych automatycznie wykryto zmiany w układach MCP23S17 wzmacniacza sygnału wejściowego/wyjściowego magistrali. Układy MCP23S17 wzmacniacza sygnału wejściowego/wyjściowego magistrali posiadają rejestry kontroli odczytu/zapisu. Uwaga: Układy MCP23S17 wzmacniacza sygnału wejściowego/wyjściowego magistrali mają rejestry kontroli odczytu/zapisu.	Gdy analizator wykryje różnicę między żądanym a odczytanymi wartościami rejestrów konfiguracji, wszystkie urządzenia na magistrali SPI (szeregowy interfejs peryferyjny) są resetowane i automatycznie inicjalizowane ponownie. Wybierz kolejno opcje: OPERATION (OPERACJA) > FAULT ARCHIVE (ARCHIWUM USTEREK). Potwierdź ostrzeżenie i poinformuj pomoc techniczną.	
135_MODBUS WARN (OSTRZEŻENIE MODBUS)	Stan wewnętrznych zadań Modbus jest nieznany.	W przypadku wystąpienia tego ostrzeżenia obwód magistrali Modbus zostanie automatycznie uruchomiony ponownie. Potwierdź ostrzeżenie i poinformuj dystrybutora lub producenta. Jeśli ostrzeżenie będzie nadal wyświetlane, wymień płytę główną. Patrz Części zamienne i akcesoria na stronie 49.	

Tabela 4	Ostrzeżenia	systemu	(ciąg	dalszy)
----------	-------------	---------	-------	---------

2.3 Powiadomienia

Aby wyświetlić powiadomienia, wybierz kolejno opcje OPERATION (OPERACJA) > FAULT ARCHIVE (ARCHIWUM USTEREK). Gdy w lewym górnym rogu ekranu Reaction Data (Dane reakcji) lub Reagent Status (Stan odczynnika) pojawi się komunikat "SYSTEM NOTE (UWAGA SYSTEMOWA)", oznacza to, że wystąpiło powiadomienie. Patrz Tabela 5.

Komunikat	Opis	Rozwiązanie
85_LOW REAGENTS (NISKI POZIOM ODCZYNNIKÓW) (można ustawić jako ostrzeżenie lub notatkę)	Obliczone poziomy odczynników w pojemnikach jest niski.	Wymień odczynniki. Patrz Napełnianie lub wymiana odczynników na stronie 6. Aby zwiększyć liczbę dni przed wyświetleniem powiadomienia LOW REAGENTS (NISKI POZIOM ODCZYNNIKÓW), wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > COMMISSIONING (PRZYGOTOWANIE DO EKSPLOATACJI) > REAGENTS MONITOR (MONITOR ODCZYNNIKÓW) > LOW REAGENTS AT (NISKI POZIOM ODCZYNNIKÓW).
86_POWER UP (WŁĄCZANIE ZASILANIA)	Po upływie limitu czasu układu alarmowego procesora nastąpiło przywrócenie zasilania lub ponowne uruchomienie analizatora.	To powiadomienie jest potwierdzane automatycznie. Nie jest konieczne podejmowanie żadnych działań.
87_SERVICE TIME RESET (RESET CZASU SERWISU)	Licznik serwisowy został ustawiony na 180 dni (domyślnie). Wybrano opcję RESET SERVICE COUNTER (RESET LICZNIKA SERWISOWEGO).	To powiadomienie jest potwierdzane automatycznie. Nie jest konieczne podejmowanie żadnych działań.
122_SAMPLE FAULT 1 (USTERKA PRÓBKI 1) 123_SAMPLE FAULT 2 (USTERKA PRÓBKI 1) 124_SAMPLE FAULT 3 (USTERKA PRÓBKI 1)	Urządzenie zewnętrzne wysłało do analizatora sygnał wejściowy usterki próbki.	Sprawdź poziom cieczy w próbce zewnętrznej i system pobierania próbek dla kanału próbkowania. Sprawdź urządzenie do monitorowania próbek zewnętrznych i zewnętrzne przewody sygnału wejściowego.

Tabela 5 Powiadomienia

2.4 Wyświetlanie historii stanu przed usterką

Wyświetla krótką historię stanu niektórych elementów analizatora przed wystąpieniem usterki. Wartość domyślna 0,0 oznacza brak usterek dla danego elementu.

- Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT STATUS (STAN USTERKI).
- 2. Wybierz opcję.

Орсја	Opis
O2 FLOW (PRZEPŁYW O2)	Pokazuje 120 pozycji dla wartości nastawy MFC (sterownika przepływu masy) (pierwsza kolumna) i wartości przepływu MFC (druga kolumna). Wartości są rejestrowane w odstępach 1- sekundowych. W przypadku wystąpienia usterki wartości są przechowywane w archiwum usterek O2 FLOW (PRZEPŁYW O2) do momentu wystąpienia nowej usterki.

Орсја	Opis
RELAY PCB FAULT(USTERKA PCB PRZEKAŹNIKA)	Pokazuje 120 odczytów wejścia do zacisku S41 FLT na płytce sygnałowej. W przypadku wystąpienia usterki rejestrowany jest numer "1". Odczyty są przechowywane w archiwum RELAY PCB FAULT(USTERKA PCB PRZEKAŹNIKA) do momentu wystąpienia nowej usterki. Na podstawie odczytów sprawdzić, czy usterka wystąpiła nagle lub ma charakter przerywany.
OZONE PCB FAULT (USTERKA PCB OZONU)	Pokazuje 120 odczytów wejścia do końcówki S42 FLT O3 na płytce sygnałowej. W przypadku wystąpienia usterki rejestrowany jest numer "1". Odczyty są przechowywane w archiwum OZONE PCB FAULT (USTERKA PCB OZONU) do momentu wystąpienia nowej usterki. Na podstawie odczytów sprawdzić, czy usterka wystąpiła nagle lub ma charakter przerywany.
CO2 ANALYZER FAULT (USTERKA ANALIZATORA CO2)	Wyświetla 120 odczytów wejścia do zacisku S11, który jest sygnałem 4 - 20 mA z analizatora CO ₂ na płytce sygnałowej. Wartości są rejestrowane w odstępach 2-sekundowych (łącznie 4 minuty). W przypadku wystąpienia usterki odczyty są przechowywane w archiwum CO2 ANALYZER FAULT (USTERKA ANALIZATORA CO2) do momentu wystąpienia nowej usterki.
BIOTECTOR TEMPERATURE (TEMPERATURA URZĄDZENIA BIOTECTOR)	Wyświetla 120 odczytów temperatury analizatora. Wartości są wyświetlane w odstępach co 2 sekundy (łącznie 4 minuty). W przypadku wystąpienia usterki wartości są przechowywane w archiwum BIOTECTOR TEMPERATURE (TEMPERATURA URZĄDZENIA BIOTECTOR) do momentu wystąpienia nowej usterki.
COOLER TEMPERATURE (TEMPERATURA CHŁODNICY)	Wyświetla 120 odczytów temperatury chłodnicy. Wartości są wyświetlane w odstępach co 10 sekundy (łącznie 20 minuty). W przypadku wystąpienia usterki wartości są przechowywane w archiwum COOLER TEMPERATURE (TEMPERATURA CHŁODNICY) do momentu wystąpienia nowej usterki.

3.1 Wykonywanie testu ciśnienia

Wykonaj test ciśnienia, aby sprawdzić, czy w analizatorze występuje wycieku gazu.

- Wybierz opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > PRESSURE TEST (TEST CIŚNIENIA).
- Wybierz PRESSURE TEST (TEST CIŚNIENIA), a następnie naciśnij ✓. Rozpocznie się test ciśnienia (60 sekund). Informacje, które pokazują się, jak poniżej.

Pozycja	Opis
TIME (CZAS)	Pokazuje pozostały czas testu.
MFC SETPOINT (NASTAWA MFC)	Pokazuje ustawienie sterownika przepływu masy (MFC) dla testu (domyślnie: 40 L/h).
MFC FLOW (PRZEPŁYW MFC)	Pokazuje przepływ z MFC. Jeśli nie ma wycieku gazu, przepływ powoli spadnie do poziomu bliskiego 0 L/h po 25 sekundach.
STATUS (STAN)	Przedstawia wyniki testu. TESTING (TESTOWANIE) — trwa test
	PASS (UDANE) — przepływ z MFC na końcu testu jest mniejszy niż 4 L/h (domyślnie).
	WARNING (OSTRZEŻENIE) — przepływ z MFC na końcu testu wynosi więcej niż 4 L/h, ale mniej niż 6 L/h (domyślnie).
	FAIL (NIEPOWODZENIE) — przepływ z MFC na końcu testu jest większy niż 6 L/h (domyślnie).
	Uwaga: Aby zmienić domyślne wartości graniczne dla testu, należy wybrać kolejno opcje: MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU).

 Jeśli test ciśnienia zakończy się niepowodzeniem, wybierz opcję PRESSURIZE REACTOR (ZWIĘKSZ CIŚNIENIE W REAKTORZE), a następnie naciśnij ✓, aby znaleźć miejsce wycieku. Rozpocznie się dłuższy test (999 sekund).

3.2 Wykonywanie testu przepływu

Wykonaj test przepływu w celu określenia, czy w układzie wydechowym lub przewodach pobierania próbek nie występują niedrożności.

- WYBIERZ KOLEJNO OPCJE: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > FLOW TEST (TEST PRZEPŁYWU).
- Wybierz EXHAUST TEST (TEST WYDECHU), a następnie naciśnij ✓.
 Rozpocznie się test przepływu (30 sekund). Informacje, które pokazuja się

Rozpocznie się test przepływu (30 sekund). Informacje, które pokazują się, jak poniżej.

Pozycja	Opis
TIME (CZAS)	Pokazuje pozostały czas testu.
MFC SETPOINT (NASTAWA MFC)	Pokazuje ustawienie sterownika przepływu masy (MFC) dla testu (domyślnie: 80 L/h).

	Pozycja	Opis
	MFC FLOW (PRZEPŁYW MFC)	Pokazuje przepływ z MFC. Jeśli nie ma niedrożności, przepływ wynosi około 80 L/h.
	STATUS (STAN)	Przedstawia wyniki testu. TESTING (TESTOWANIE) — trwa test
		PASS (UDANE) — przepływ z MFC na końcu testu wynosi ponad 72 L/h (domyślnie).
		WARNING (OSTRZEŻENIE) — przepływ z MFC na końcu testu jest mniejszy niż 72 L/h, ale większy niż 40 L/h (domyślnie).
		FAIL (NIEPOWODZENIE) — przepływ z MFC na końcu testu jest mniejszy niż 40 L/h (domyślnie).
		Uwaga: Aby zmienić domyślne wartości graniczne dla testu, należy wybrać kolejno opcje: MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > SEQUENCE PROGRAM (PROGRAM SEKWENCJI) > PRESSURE/FLOW TEST (TEST CIŚNIENIA/PRZEPŁYWU).
3.	Jeśli test wydechu (PRZEPŁYW WYD na zaworze wydecl	nie powiedzie się, należy wybrać opcję EXHAUST FLOW ECHU), a następnie nacisnąć ✔, aby znaleźć niedrożność (np. nowym). Rozpocznie się dłuższy test (999 sekund).
٨	Wybierz SAMPLE	OUT TEST (TEST W/VI OTU PRÓBKI), a nastennie naciśnii

 Wybierz SAMPLE OUT TEST (TEST WYLOTU PROBKI), a następnie naciśnij przycisk ✓.

Rozpocznie się test wylotu próbki. Test określa, czy w przewodach wyjściowych pobierania próbek nie ma niedrożności.

 Jeśli test wylotu próbki zakończy się niepowodzeniem, wybierz opcję SAMPLE OUT FLOW (PRZEPŁYW WYLOTOWY PRÓBKI), a następnie naciśnij ✓, aby znaleźć niedrożność (np. na zaworze wylotowym próbki). Rozpocznie się dłuższy test (999 sekund).

3.3 Wykonywanie testu na obecność ozonu

Wykonaj test na obecność ozonu, aby określić, czy generator ozonu działa prawidłowo.

- 1. Zainstaluj tester ozonu w analizatorze. Patrz arkusz informacyjny T029. Procedura sprawdzania poziomu ozonu w analizatorze BioTector B3500 i B7000 za pomocą uniwersalnego testera ozonu..
- Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > OZONE TEST (TEST OZONU).
- 3. Wybierz opcję START TEST (ROZPOCZNIJ TEST).

Analizator przeprowadza test ciśnienia. Następnie włączany jest generator ozonu. Na wyświetlaczu pojawi się komunikat ostrzegawczy dotyczący ozonu.

4. Po pęknięciu pierścienia o-ring w testerze wybierz opcję STOP TEST (ZATRZYMAJ TEST).

Analizator usuwa cały ozon z testera ozonu (30 sekund). Wyświetlane są wyniki testu.

Pozycja	Opis
TIME (CZAS)	Pokazuje czas do pęknięcia pierścienia o-ring.
STATUS (STAN)	Przedstawia wyniki testu. TESTING (TESTOWANIE) — trwa test
	PASS (UDANE) — czas pęknięcia pierścienia o-ring był krótszy niż 18 sekund (domyślnie).
	LOW OZONE (NISKI POZIOM OZONU) — czas pęknięcia pierścienia o-ring był dłuższy niż 18 sekund, ale krótszy niż 60 sekund (domyślnie).
	FAIL (NIEPOWODZENIE) — czas pęknięcia pierścienia o-ring był dłuższy niż 60 sekund.
	Uwaga: Aby zmienić domyślne wartości graniczne dla testu, wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > SYSTEM CONFIGURATION (KONFIGURACJA SYSTEMU) > FAULT SETUP (USTAWIENIA USTEREK) > OZONE TEST TIME (CZAS TESTU OZONU).

3.4 Testowanie pompy próbki

Test pompy próbki umożliwia wyznaczenie poprawnych czasów pompowania do przodu i wstecz poszczególnych strumienia próbek.

- Wybierz kolejno opcje MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > SAMPLE PUMP TEST (TEST POMPY PRÓBEK).
- 2. Wybierz jedną z opcji.

Орсја	Opis
VALVE (ZAWÓR)	Ustawia złączkę SAMPLE (PRÓBKA) lub MANUAL (RĘCZNA) używaną do testu. Aby na przykład wybrać złącze SAMPLE 1 (PRÓBKA 1), wybrać STREAM VALVE (ZAWÓR STRUMIENIA) 1.
PUMP FORWARD TEST (TEST POMPY DO PRZODU)	Uruchamia pompę próbek w kierunku do przodu. Uwaga: Najpierw wybierz PUMP REVERSE TEST (TEST POMPY DO TYŁU), aby opróżnić linie próbkowania, a następnie wybierz PUMP FORWARD TEST (TEST POMPY DO PRZODU).
	 Gdy próbka przejdzie przez zawór próbki (ARS) i skapuje do rury spustowej z boku analizatora, naciśnij przycisk , aby zatrzymać stoper.
	 Zanotuj czas podany na wyświetlaczu. Czas jest poprawnym czasem pompowania do przodu wybranego strumienia.
PUMP REVERSE	Uruchamia pompę próbek w odwrotnym kierunku.
TEST (TEST POMPY DO TYŁU)	 Gdy linie próbek i odkraplacz na próbkę utlenioną / naczynie czyszczące będą puste, naciśnij przycisk , aby zatrzymać stoper.
	 Zanotuj czas podany na wyświetlaczu. Czas jest poprawnym czasem pompowania wstecz pompy próbkowej.
SAMPLE PUMP (POMPA PRÓBEK)	Przechodzi do menu MAINTENANCE (KONSERWACJA) > COMMISSIONING (PRZYGOTOWANIE DO EKSPLOATACJI) > SAMPLE PUMP (POMPA PRÓBEK) w celu ustawienia czasów pompowania do przodu i wstecz strumieni próbek.

3.5 Wykonywanie testu pH

A UWAGA Narażenie na działanie substancji chemicznych. Stosować się do procedur bezpieczeństwa w laboratoriach i zakładać sprzęt ochrony osobistej, odpowiedni do używanych substancji chemicznych. Protokoły warunków bezpieczeństwa można znaleźć w aktualnych kartach charakterystyki (MSDS/SDS) materiałów.

Narażenie na działanie substancji chemicznych. Usuwać substancje chemiczne i odpady zgodnie z przepisami lokalnymi, regionalnymi i państwowymi.

Wykonaj test pH w celu ustalenia, czy odczyn pH roztworu w reaktorze jest prawidłowy na różnych etapach reakcji.

Co należy przygotować:

- Papier pH
- Szklana zlewka
- Środki ochrony osobistej (patrz MSDS/SDS)
- 1. Należy stosować środki ochrony osobistej wymienione w karcie charakterystyki (MSDS/SDS).
- Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU) > pH TEST (TEST pH).
- 3. Wybierz opcję RANGE, VALVE (ZAKRES, ZAWÓR).
- **4.** Ustaw zakres operacji (np. 1) i strumień (np. STREAM (STRUMIEŃ) 1), który ma zostać użyty do testu.

Zakresy operacji można sprawdzić na ekranie OPERATION (OPERACJA) > SYSTEM RANGE DATA (DANE ZAKRESU SYSTEMU). Wybierz zakres operacji zgodny z normalnymi pomiarami dla strumienia próbki.

- 5. Wybierz MODE (TRYB).
- 6. Wybierz tryb testowy (np. TIC+TOC lub TC).
- 7. Wybierz opcję START TEST (ROZPOCZNIJ TEST).
- 8. Naciśnij ponownie ✓, aby potwierdzić, że poprzednia reakcja zakończyła się normalnie.

Analizator wykonuje kolejno następujące czynności:

- Normalne uruchomienie trwa około 210 sekund (oczyszczanie ozonem, oczyszczanie reaktora, test ciśnienia i test przepływu).
- Dodanie próbki i kwasu TIC do reaktora. Następnie program zostaje wstrzymany, aby użytkownik mógł zmierzyć odczyn pH TIC.
- Dodanie odczynnika zasadowego do roztworu w reaktorze. Następnie program zostaje wstrzymany, aby użytkownik mógł zmierzyć odczyn pH zasady.
- Dodanie kwasu TOC do roztworu w reaktorze. Następnie program zostaje wstrzymany, aby użytkownik mógł zmierzyć odczyn pH.
- Faza oczyszczania reaktora i analizatora CO₂ została zakończona.

9. Gdy na wyświetlaczu pojawi się komunikat "TEST TIC pH (TEST pH TIC)", wybierz opcję.

Орсја	Opis
TAKE SAMPLE (POBIERZ PRÓBKĘ)	Ustawia zawór wylotowy próbki na włączony przez 0,1 s. Wybierz opcję TAKE SAMPLE (POBIERZ PRÓBKĘ) cztery razy, aby usunąć starą próbkę z przewodu wylotowego próbki, a następnie pobierz próbkę do szklanej zlewki. Do identyfikacji odczynu pH próbki należy użyć papieru pH. Zostanie wyświetlony odczyn pH.
	Uwaga: Spadek objętości w reaktorze podczas pobierania próbki może mieć negatywny wpływ na pH próbek pobranych w następnym kroku. Aby uzyskać najlepszą dokładność, podczas badania pH, należy pobrać tylko jedną próbkę, a następnie zakończyć badanie. Ponownie rozpocznij test pH i pobierz próbkę na innym etapie (np. TEST BASE pH (TEST pH ZASADY)).
CONTINUE TO NEXT PHASE (PRZEJDŹ DO NASTĘPNEJ FAZY)	Analizator przechodzi do następnego etapu programu.
STOP TEST (ZATRZYMAJ TEST)	Analizator przechodzi do ostatniego etapu programu, oczyszczania reaktora.
Gdy na wyświetlaczu poja wybierz opcję. Opcje są t	awi się komunikat "TEST BASE pH (TEST pH ZASADY)", akie same jak w poprzednim etapie.

- **11.** Gdy na wyświetlaczu pojawi się komunikat "TEST TOC pH (TEST pH TOC)", wybierz opcję. Opcje są takie same jak w poprzednim etapie.
- 12. Gdy pojawi się komunikat "CONFIRM ALL TUBES RE-CONNECTED (SPRAWDŹ, CZY WSZYSTKIE PRZEWODY ZOSTAŁY PONOWNIE PODŁĄCZONE)", naciśnij przycisk ✓, aby potwierdzić.

Etap oczyszczania reaktora i analizatora CO₂ jest zakończony.

3.6 Wykonaj test fazy ciekłej

10.

Wykonaj test fazy ciekłej, aby sprawdzić, czy każdy etap analizy fazy ciekłej został wykonany prawidłowo.

- Wybierz kolejno opcje MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > PROCESS TEST (TEST PROCESU).
- Przewiń w dół do pozycji LIQUID PHASE PROCESS TEST (TEST PROCESU FAZY CIEKŁEJ).
- 3. Wybierz opcję.

Орсја	Opis
PURGE CELLS TEST (TEST OCZYSZCZANIA KUWET)	Rozpoczyna etap oczyszczania kuwet analizy fazy ciekłej. Podczas testu usuwana jest zawartość utlenionego pojemnika na próbkę oraz komórek pomiarowych TN i TP.
	Uwaga: Po zakończeniu testu kuwety pomiarowe nie sa napełniane woda dejonizowana.

Орсја	Opis
CLEAN CELLS TEST (TEST CZYSTYCH KUWET)	Rozpoczyna etap czyszczenia kuwet analizy fazy ciekłej. Podczas testu usuwana jest zawartość utlenionego pojemnika na próbkę oraz komórek pomiarowych TN i TP. Następnie płyn do czyszczenia TN wpływa do kuwet pomiarowych TN i TP oraz linii próbkowania między kuwetami pomiarowymi TN i TP. Zbiorniki czyszczące są czyszczone.
	Po zakończeniu testu kuwety pomiarowe i linie próbkowania są przepłukiwane wodą dejonizowaną.

Орсја	Opis
READ DIW REF TEST (TEST ODCZYTU ODNIESIENIA WODY DEJONIZOWANEJ)	Rozpoczyna cykl odczytu referencyjnego w wodzie dejonizowanej. Test usuwa zawartość komórek pomiarowych TN i TP. Następnie woda dejonizowana wpływa do kuwet pomiarowych TN i TP. Woda dejonizowana w komórkach pomiarowych TN i TP jest mierzona w tym samym czasie w module fotometru z dwoma komórkami (DCP). Pomiar wykonuje się w taki sam sposób jak w przypadku normalnej reakcji.
	Po zakończeniu testu na wyświetlaczu pojawią się następujące pozycje:
	N SIG (SYGNAŁ N) — Odczyt natężenia azotu przy długości fali sygnału (217 nm) i wartość procentowa (%) natężenia ² .
	N REF (REF N) — Odczyt natężenia azotu przy długości fali odniesienia (265 nm) i wartość procentowa (%) natężenia.
	S/R RATIO (STOSUNEK S/R) — Stosunek sygnału do sygnału odniesienia dla azotu
	P SIG (SYGNAŁ P) — Odczyt natężenia fosforu przy długości fali sygnału (405 nm) i wartość procentowa (%) natężenia.
	P REF (ODNIESIENIE P) — Odczyt natężenia fosforu przy długości fali odniesienia (486 nm) i wartość procentowa (%) natężenia.
	S/R RATIO (STOSUNEK S/R) — Stosunek sygnału do sygnału odniesienia dla fosforu
	Po zakończeniu pomiarów analizator usuwa zawartość kuwet pomiarowych TN i TP.
	Uwaga: Wartości procentowe natężenia powinny mieścić się w zakresie progu błędu (zwykle powyżej 50% i poniżej 150%).
READ TN+TP SMPL TEST (ODCZYT TESTU PRÓBKI TN+TP)	Przed wybraniem tej opcji należy wybrać kolejno OPERATION (OPERACJA) > START,STOP (URUCHOM, ZATRZYMAJ) > FINISH & STOP (ZAKOŃCZ I ZATRZYMAJ). Upewnij się, że pojemnik z próbka utleniona jest wypełniony płynem.
	Rozpoczyna cykl odczytu próbki TN. Test usuwa zawartość kuwet pomiarowych. Następnie próbka znajdująca się w zbiorniku utlenionej próbki (OSCP) trafia do celi pomiarowej TN i jest mierzona w module fotometru z podwójną celą. Pomiar wykonuje się w taki sam sposób jak w przypadku normalnej reakcji.
	Po zakończeniu testu na wyświetlaczu pojawią się następujące pozycje:
	N SIG (SYGNAŁ N) — Odczyt natężenia azotu przy długości fali sygnału (217 nm)
	N REF (REF N) — Odczyt natężenia azotu przy długości fali odniesienia (265 nm)
	S/R RATIO (STOSUNEK S/R) — Stosunek sygnału do sygnału odniesienia dla azotu
	Uwaga: Wartość % natężenia nie jest obliczana (wyświetlane jest 0%).
	Po zakończeniu pomiarów analizator usuwa zawartość kuwety pomiarowej TN.

3.7 Wykonywanie symulacji analizy utleniania

Wykonaj symulacje analizy utleniania w celu określenia, czy działanie podzespołu (np. pompy, zaworu czy sterownika przepływu masy) jest prawidłowe.

² Wartość % natężenia jest obliczana na podstawie odczytu testu i odczytu fabrycznego.

Uwaga: Po każdym włączeniu podzespołu analizator zatrzyma działanie innych urządzeń, aby nie doszło do uszkodzenia analizatora.

Po naciśnięciu przycisku "wstecz" w celu wyjścia z menu analizator przeprowadza proces synchronizacji pompy.

 Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SIMULATE (SYMULACJA) > OXIDATION PHASE SIM (SYMULACJA FAZY UTLENIANIA).

Zostanie wyświetlony stan podzespołów analizatora.

2. Wybierz opcję.

Gdy podzespół jest włączony, przed jego nazwą wyświetlana jest gwiazdka (*). *Uwaga: Zmiany wprowadzone w ustawieniach tego menu nie są zapisywane.*

Орсја	Opis	
MFC	Ustawia przepływ sterownika przepływu masy (MFC) (np. 40 L/h). Ustaw przepływ. Naciśnij ✓, aby uruchomić sterownik przepływu masy (MFC). Zmierzony przepływ pojawi się w górnej części wyświetlacza. Uwaga: Jeśli wyświetlany przepływ wynosi 0,0 L/h, sterownik MFC jest wyłączony.	
OZONE GENERATOR (GENERATOR OZONU)	Włącza lub wyłącza generator ozonu. Uwaga: Ze względów bezpieczeństwa przed włączeniem generatora ozonu wykonywany jest test ciśnieniowy. W przypadku wykrycia wycieku gazu generator ozonu nie zostanie włączony.	
ACID PUMP (POMPA KWASU)	Włącza lub wyłącza pompę kwasu. Ustawia liczbę impulsów (½ obrotu).	
	Gdy pompa pracuje, wyświetlany jest rzeczywisty czas impulsu (nawias zewnętrzny) i ustawiony czas impulsu (nawias wewnętrzny).	
ACID VALVE (ZAWÓR KWASU)	Włącza lub wyłącza zawór kwasu.	
BASE PUMP (POMPA ZASADOWA)	Włącza lub wyłącza pompę zasady. Ustawia liczbę impulsów (½ obrotu).	
	Gdy pompa pracuje, wyświetlany jest rzeczywisty czas impulsu (nawias zewnętrzny) i ustawiony czas impulsu (nawias wewnętrzny).	
BASE VALVE (ZAWÓR ZASADOWY)	Włącza lub wyłącza zawór zasady.	
SAMPLE VALVE (ZAWÓR PRÓBEK)	Ustawia zawór próbek (ARS) w wybranej pozycji. Opcje: SEN1 (pompa próbek do obejścia), SEN2 (pompa próbek do reaktora) lub SEN3 (kwas lub zasada do reaktora).	
SAMPLE PUMP (POMPA PRÓBEK)	Ustawia pompę próbek w wybranym trybie pracy. Opcje: FWD (DO PRZODU), REV (DO TYŁU), P-FWD (STEROWANIE IMPULSOWE DO PRZODU) lub P-REV (STEROWANIE IMPULSOWE DO TYŁU).	
	Jeśli wybrano opcję P-FWD (STEROWANIE IMPULSOWE DO PRZODU) lub P-REV (STEROWANIE IMPULSOWE DO TYŁU), ustaw liczbę impulsów (½ obrotu rolki pompy)	
	Gdy pompa pracuje, wyświetlany jest rzeczywisty czas impulsu (nawias zewnętrzny) i ustawiony czas impulsu (nawias wewnętrzny).	
INJECTION VALVE (ZAWÓR WTRYSKOWY)	Włącza lub wyłącza zawór wtryskowy.	

Орсја	Opis		
CIRCULATION PUMP (POMPA OBIEGOWA)	Włącza lub wyłącza pompę obiegową.		
SAMPLE OUT VALVE (ZAWÓR WYLOTOWY PRÓBKI)	Włącza lub wyłącza zawór wylotowy.		
EXHAUST VALVE (ZAWÓR WYDECHU)	Włącza lub wyłącza zawór wydechowy.		
CLEANING VALVE (ZAWÓR CZYSZCZĄCY)	Włącza lub wyłącza zawór czyszczący.		
CALIBRATION VALVE (ZAWÓR KALIBRACYJNY) (opcja)	Włącza lub wyłącza zawór kalibracji zera lub zakresu. Opcje: ZERO, SPAN (ZAKRES) lub OFF (WYŁ.).		
STREAM VALVE (ZAWÓR STRUMIENIA)	Włącza lub wyłącza próbkowy zawór strumieniowy. Wybierz numer zaworu strumieniowego. Jednocześnie może być włączony tylko jeden zawór strumieniowy.		
	Uwaga: Zawory strumieniowe mogą być sterowane przez przekaźniki programowalne lub (dodatkową) kartę rozszerzenia strumienia.		
MANUAL VALVE (ZAWÓR RĘCZNY)	Włącza lub wyłącza zawór ręczny. Wybierz zawór ręczny. Jednocześnie może być włączony tylko jeden zawór ręczny.		
COOLER (CHŁODNICA)	Włącza, wyłącza lub aktywuje automatyczne sterowanie chłodnicą, aby sprawdzić, czy przekaźnik chłodnicy działa prawidłowo.		
LEAK DETECTOR (WYKRYWACZ WYCIEKÓW)	Opcji LEAK DETECTOR (WYKRYWACZ WYCIEKÓW) nie można wybrać. Na wyświetlaczu pojawi się informacja o stanie wejścia alarmowego wykrywacza wycieków cieczy.		
FAN (WENTYLATOR)	Włącza, wyłącza lub aktywuje automatyczne sterowanie wentylatorem, aby sprawdzić, czy przekaźnik wentylatora działa prawidłowo. Na ekranie zostanie wyświetlona temperatura analizatora.		
	Gdy dla opcji FAN (WENTYLATOR) jest wybrane ustawienie AUTO, analizator wyłącza wentylator, gdy temperatura analizatora jest niższa niż 25°C. Wentylator działa w sposób ciągły, gdy temperatura analizatora przekracza 25°C.		
SAMPLER FILL (NAPEŁNIANIE PRÓBNIKA)	Włącza lub wyłącza sygnał napełniania próbnika. Sygnał pozostaje włączony do momentu jego wyłączenia.		
SAMPLER EMPTY (PRÓBNIK PUSTY)	Włącza lub wyłącza sygnał opróżniania próbnika. Sygnał jest aktywny przez 5 sekund.		
SAMPLE SENSOR (CZUJNIK PRÓBKI)	Opcji SAMPLE SENSOR (CZUJNIK PRÓBKI) nie można wybrać. Stan czujnika próbki jest pokazywany na wyświetlaczu.		
INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)	Przejdź do menu MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA). Menu INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA) przedstawia stan wejść cyfrowych, wyjść cyfrowych, wejść analogowych i wyjść analogowych.		

3.8 Przeprowadzić symulacje analizy cieczy

Wykonaj symulację fazy ciekłej w celu określenia, czy działanie podzespołu (np. pompy, zaworu, kotła i lampy) jest prawidłowe.

Uwaga: Po każdym włączeniu podzespołu analizator zatrzyma działanie innych urządzeń, aby nie doszło do uszkodzenia analizatora.

 Wybierz kolejno opcje MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SIMULATE (SYMULACJA) > LIQUID PHASE SIM (SYMULACJA FAZY CIEKŁEJ).

Zostanie wyświetlony stan podzespołów analizatora. Ponadto na wyświetlaczu pokazywane są odczyty natężenia sygnału (S) i natężenia odniesienia (R) dla azotu i fosforu oraz stosunek sygnału do sygnału odniesienia (S/R) dla azotu i fosforu. **Uwaga:** Nowe odczyty natężenia i stosunku są wyświetlane na wyświetlaczu tylko wtedy, gdy używane są detektory w fotometrze dwuogniwowym.

2. Wybrać opcję.

Gdy podzespół jest włączony, przed jego nazwą wyświetlana jest gwiazdka (*). *Uwaga: Zmiany wprowadzone w ustawieniach tego menu nie są zapisywane.*

Орсја	Opis
XENON LAMP (LAMPA KSENONOWA)	Włącza lub wyłącza lampę ksenonową.
NP SAMPLE VALVE (ZAWÓR PRÓBEK NP)	Włącza lub wyłącza zawór próbek NP.
SAMPLE LOOP VALVE (ZAWÓR PĘTLI PRÓBKI)	Włącza lub wyłącza zawór pętli próbki.
DIVERSION VALVE (ZAWÓR ZMIANY KIERUNKU PRZEPŁYWU)	Włącza lub wyłącza zawór zmiany kierunku przepływu.
TP REAGENT VALVE (ZAWÓR ODCZYNNIKA TP)	Włącza lub wyłącza zawór odczynnika TP.
CELL VALVE (ZAWÓR KUWETY)	Włącza lub wyłącza zawór kuwety.
BOILER VALVE (ZAWÓR BOJLEROWY)	Włącza lub wyłącza zawór kotła.
BOILER DRAIN VALVE (ZAWÓR SPUSTOWY KOTŁA)	Włącza lub wyłącza zawór spustowy kotła.
DI WATER VALVE (ZAWÓR WODY DEJONIZOWANEJ)	Włącza lub wyłącza zawór wody dejonizowanej.
TN CLEANING VALVE (ZAWÓR CZYSZCZĄCY TN)	Włącza lub wyłącza zawór czyszczenia TN.
N PUMP (POMPA N)	Ustawia pompę azotu (N) w wybranym trybie pracy. Opcje: P-FWD (STEROWANIE IMPULSOWE DO PRZODU) (sterowanie impulsowe do przodu) i P-REV (STEROWANIE IMPULSOWE DO TYŁU) (sterowanie impulsowe do tyłu). Ustawia liczbę impulsów (½ liczba obrotów rolki pompy).
Ρ ΡυΜΡ (ΡΟΜΡΑ Ρ)	Ustawia pompę fosforu (P) w wybranym trybie pracy. Opcje: P-FWD (STEROWANIE IMPULSOWE DO PRZODU) (sterowanie impulsowe do przodu) i P-REV (STEROWANIE IMPULSOWE DO TYŁU) (sterowanie impulsowe do tyłu). Ustawia liczbę impulsów (½ liczba obrotów rolki pompy).
TP REAGENT PUMP (POMPA ODCZYNNIKA TP)	Ustawia pompę odczynnika TP w wybranym trybie pracy. Opcja: (sterowanie impulsowe do przodu). Ustawia liczbę impulsów (½ liczba obrotów rolki pompy).

Орсја	Opis		
HCI ACID PUMP (POMPA KWASU HCI)	Ustawia pompę kwasu HCL w wybranym trybie pracy. Opcja: P-FWD (STEROWANIE IMPULSOWE DO PRZODU) (sterowanie impulsowe do przodu). Ustawia liczbę impulsów (½ liczba obrotów rolki pompy).		
TP BOILER (KOCIOŁ TP)	Włącza, wyłącza kocioł TP lub ustawia jego automatyczną pracę. Gdy opcja TP BOILER (KOCIOŁ TP) jest ustawiona na AUTO, analizator steruje kotłem za pomocą ustawienia TP BOILER TEMP (TEMP. KOTŁA TP) w menu BOILER PROGRAM (PROGRAM KOTŁA). Po zmianie ustawienia TP BOILER (KOCIOŁ TP) z AUTO na ON (WŁ.) kocioł zwiększa temperaturę. Gdy temperatura kotła przekracza 110°C, analizator wyłącza kocioł, aby zapobiec jego uszkodzeniu.		
TPr BOILER (KOCIOŁ TPr)	Włącza lub wyłącza kocioł TPr (mieszadło podgrzewane i urządzenie do usuwania pęcherzyków) lub ustawia jego automatyczną pracę. Gdy opcja TPr BOILER (KOCIOŁ TPr) jest ustawiona na AUTO, analizator steruje kotłem za pomocą ustawienia TPr BOILER TEMP (TEMPERATURA KOTŁA TPr) w menu BOILER PROGRAM (PROGRAM KOTŁA).		
	Po zmianie ustawienia TPr BOILER (KOCIOŁ TPr) z AUTO na ON (WŁ.) kocioł zwiększa temperaturę. Gdy temperatura kotła przekracza 110°C, analizator wyłącza kocioł, aby zapobiec jego uszkodzeniu.		
DCP LEAK DETECTOR (WYKRYWACZ WYCIEKÓW DCP)	Opcji DCP LEAK DETECTOR (WYKRYWACZ WYCIEKÓW DCP) nie można wybrać. Stan wejścia alarmowego wykrywacza wycieków DCP dla podwójnego fotometru jest wyświetlany na wyświetlaczu. ON (WŁ.) — Wyciek cieczy w fotometrze dwuogniwowym. OFF (WYŁ.) — Brak wycieku.		
CLEANING VALVE (ZAWÓR CZYSZCZĄCY)	Włącza lub wyłącza zawór czyszczący.		
SAMPLE PUMP (POMPA PRÓBEK)	Ustawia pompę próbek w wybranym trybie pracy. Opcje: FWD (DO PRZODU), REV (DO TYŁU), P-FWD (STEROWANIE IMPULSOWE DO PRZODU) lub P-REV (STEROWANIE IMPULSOWE DO TYŁU).		
	Jeśli wybrano opcję P-FWD (STEROWANIE IMPULSOWE DO PRZODU) lub P-REV (STEROWANIE IMPULSOWE DO TYŁU), ustaw liczbę impulsów (½ obrotu rolki pompy).		
	Gdy pompa pracuje, wyświetlany jest rzeczywisty czas impulsu (nawias zewnętrzny) i ustawiony czas impulsu (nawias wewnętrzny).		
INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)	Przejdź do menu MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA). Menu INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA) przedstawia stan wejść cyfrowych, wyjść cyfrowych, wejść analogowych i wyjść analogowych.		

3.9 Wykonywanie testu przekaźnika lub wyjścia 4–20 mA

Wykonaj symulację sygnału w celu określenia, czy przekaźnik i wyjście 4–20 mA działają prawidłowo.

- 1. Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > SIGNAL SIMULATE (SYMULACJA SYGNAŁU).
- 2. Wybierz opcję.

Орсја	Opis		
COMMON FAULT (USTERKA WSPÓLNA)	Włącza przekaźnik FAULT (USTERKA). Uwaga: Aby sprawdzić, czy przekaźnik usterki jest ustawiony na normalnie zasilany (zamknięty) lub normalnie odłączony od zasilania (otwarty), należy zapoznać się z ustawieniem COMMON FAULT (USTERKA WSPÓLNA) w części Configure the relays (Konfigurowanie przekaźników) w instrukcji instalacji i obsługi.		
ALARM 1 do 6	Ustawia przekaźnik ALARM na włączony, jeśli został skonfigurowany.		
CHANNEL (KANAŁ) 1 do 6	Ustawia wyjście 4 - 20 mA (np. CHANNEL (KANAŁ) 1) dla wybranego sygnału 4 - 20 mA.		
STM ALARM (ALARM STM) od 1 do 6	Ustawia przekaźnik STM ALARM (ALARM STM) na włączony, jeśli został skonfigurowany.		
SAMPLE FAULT (USTERKA PRÓBKI) 1 do 6	Ustawia przekaźnik SAMPLE FAULT (USTERKA PRÓBKI) na włączony dla wskazanego strumienia, jeśli został skonfigurowany.		
SYNC RELAY (PRZEKAŹNIK SYNCHRONIZACJI)	Ustawia przekaźnik SYNC (SYNCHRONIZACJA) na włączony, jeśli został skonfigurowany.		
SAMPLE STATUS (STAN PRÓBKI) 1 do 6	Ustawia przekaźnik SAMPLE STATUS (STAN PRÓBKI) na włączony dla wskazanego strumienia, jeśli został skonfigurowany.		
CAL SIGNAL (SYGNAŁ KALIBRACJI)	Ustawia przekaźnik CAL SIGNAL (SYGNAŁ KALIBRACJI) na włączony, jeśli został skonfigurowany.		
MAINT SIGNAL (SYGNAŁ KONSERWACJI)	Ustawia przekaźnik MAINT SIGNAL (SYGNAŁ KONSERWACJI) na włączony, jeśli został skonfigurowany.		
STOP (ZATRZYMAJ)	Ustawia przekaźnik STOP (ZATRZYMAJ) na włączony, jeśli został skonfigurowany.		
FAULT (USTERKA)	Ustawia przekaźnik FAULT (USTERKA) na włączony, jeśli został skonfigurowany.		
FAULT OR WARN (USTERKA LUB OSTRZEŻENIE)	Ustawia przekaźnik FAULT OR WARN (USTERKA LUB OSTRZEŻENIE) na włączony, jeśli został skonfigurowany.		
WARNING (OSTRZEŻENIE)	Ustawia przekaźnik WARNING (OSTRZEŻENIE) na włączony, jeśli został skonfigurowany.		
NOTE (UWAGA)	Ustawia przekaźnik NOTE (UWAGA) na włączony, jeśli został skonfigurowany.		
MAN MODE TRIG (WYZWALANIE TRYBU RĘCZNEGO)	Ustawia przekaźnik MAN MODE TRIG (WYZWALANIE TRYBU RĘCZNEGO) na włączony, jeśli został skonfigurowany.		
4-20mA CHNG (ZMIANA 4-20mA)	Ustawia przekaźnik 4-20mA CHNG (ZMIANA 4-20mA) na włączony, jeśli został skonfigurowany.		
4-20mA CHNG (ZMIANA 4-20mA) 1 do 6	Ustawia przekaźnik 4-20mA CHNG (ZMIANA 4-20mA)1 do 6 na włączony dla wskazanego strumienia, jeśli został skonfigurowany.		

Орсја	Opis		
4-20mA READ (ODCZYT 4-20 mA)	Ustawia przekaźnik 4-20mA READ (ODCZYT 4-20 mA) na włączony, jeśli został skonfigurowany.		
INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA)	Przejdź do menu MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA). Menu INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA) przedstawia stan wejść cyfrowych, wyjść cyfrowych, wejść analogowych i wyjść analogowych.		

3.10 Wyświetlanie stanu wejścia i wyjścia

Wyświetlanie sygnałów na wejściach cyfrowych, wyjściach cyfrowych, wejściach analogowych i wyjściach analogowych w celu sprawdzenia działania.

- 1. Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > INPUT/OUTPUT STATUS (STATUS WEJŚCIA/WYJŚCIA).
- 2. Wybierz opcję.

Орсја	Opis	
DIGITAL INPUT (WEJŚCIE CYFROWE)	Pokazuje sygnał cyfrowy na wejściach cyfrowych (1 = aktywne, 0 = nieaktywne). Symbol "DI", po którym następują dwie cyfry oznacza wejścia cyfrowe. Na przykład DI09 to wejście cyfrowe 9.	
	Po numerze wejścia cyfrowego następuje sygnał cyfrowy na wejściu, a następnie funkcja. "[PROGRAMMABLE] (PROGRAMOWALNY)" oznacza konfigurowane wejścia cyfrowe.	
	Uwaga: DI09 to klawisz Enter. Naciśnij i przytrzymaj klawisz Enter, aby zmienić sygnał cyfrowy w DI09 na 1.	
DIGITAL OUTPUT (WYJŚCIE CYFROWE)	Pokazuje sygnał cyfrowy na wyjściach cyfrowych (1 = aktywne, 0 = nieaktywne). Symbol "DO", po którym następują dwie cyfry, oznacza wyjścia cyfrowe. Na przykład DO21 to wyjście cyfrowe 21.	
	Po numerze wyjścia cyfrowego następuje sygnał cyfrowy na wyjściu, a następnie funkcja. "[PROGRAMMABLE] (PROGRAMOWALNY)" oznacza konfigurowane wyjścia cyfrowe.	
	Uwaga: Gdy analizator jest włączony, wszystkie wyjścia cyfrowe są ustawione na 0.	
	Uwaga: DO21 ma cyfrowy sygnał 1, gdy chłodnica jest włączona, a 0, gdy chłodnica jest wyłączona. Chłodnica działa przez około 3 sekundy a następnie jest wyłączona przez 7 sekund.	
ANALOG INPUT (WEJŚCIE ANALOGOWE)	Pokazuje wartość cyfrową przetwornika ADC, napięcie wejściowe i funkcję każdego wejścia analogowego. Analizator wykorzystuje 12- bitowy przetwornik A/C, dlatego zakres wartości cyfrowej wynosi od 0 do 4095. Zakres napięcia wejściowego wynosi od 0 do 5,00 V.	
ANALOG OUTPUT (WYJŚCIE ANALOGOWE)	Pokazuje wartość cyfrową przetwornika DAC, napięcie wyjściowe i funkcję każdego wyjścia analogowego. Analizator wykorzystuje 12- bitowy przetwornik C/A, dlatego zakres wartości cyfrowej wynosi od 0 do 4095. Zakres napięcia wyjściowego wynosi od 0 do 10,00 V.	

3.11 Wyświetlanie stanu magistrali Modbus

- 1. Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > MODBUS STATUS (STATUS MODBUS).
- 2. Wybierz jedną z opcji.

Орсја	Opis
MODE (TRYB)	Pokazuje tryb pracy magistrali Modbus, czyli BIOTECTOR.
DEVICE BUS ADDRESS (ADRES MAGISTRALI URZĄDZENIA)	Pokazuje adres magistrali Modbus urządzenia.
BUS MESSAGE COUNT (LICZNIK KOMUNIKATÓW MAGISTRALI)	Pokazuje liczbę komunikatów Modbus, które zostały prawidłowo odebrane i wysłane na adres Modbus urządzenia. Uwaga: Gdy wartość licznika wynosi 65 535, kolejny odebrany komunikat ustawia wartość licznika na 1.
BUS COM ERROR COUNT (LICZNIK BŁĘDÓW MAGISTRALI COM)	Pokazuje liczbę uszkodzonych lub nieodebranych w pełni komunikatów odebranych przez magistralę Modbus. Uwaga: Gdy wartość licznika wynosi 65 535, kolejny odebrany komunikat ustawia wartość licznika na 1.
MANUFACTURE ID (IDENTYFIKATOR PRODUCENTA)	Wyświetla identyfikator producenta urządzenia (np. 1 oznacza firmę Hach).
DEVICE ID (IDENTYFIKATOR URZĄDZENIA)	Wyświetla klasę lub rodzinę urządzenia, jeśli została wprowadzona (wartość domyślna: 1234).
SERIAL NUMBER (NUMER SERYJNY)	Wyświetla numer seryjny urządzenia.
LOCATION TAG (ZNACZNIK LOKALIZACJI)	Pokazuje lokalizację urządzenia.
FIRMWARE REV (WERSJA OPROGRAMOWANIA SPRZĘTOWEGO)	Pokazuje wersję oprogramowania sprzętowego zainstalowaną w urządzeniu.
REGISTERS MAP REV (WERSJA MAPY REJESTRÓW)	Pokazuje wersję mapy rejestrów Modbus używaną przez urządzenie. Mapy rejestru Modbus są opisane w dokumentacji konfiguracji zaawansowanej.

Po opcjach menu wyświetlanych jest pierwszych 17 bajtów ostatnio odebranego (RX) i wysłanego (TX) komunikatu Modbus.

3.12 Usuwanie usterek związanych z magistralą Modbus

- 1. Upewnij się, że adres magistrali urządzenia jest prawidłowy. Patrz temat *Configure the Modbus settings (Konfigurowanie ustawień magistrali Modbus)* w Instrukcji instalacji i obsługi.
- 2. Upewnij się, że adres rejestru (5-cyfrowy kod) jest prawidłowy.
- Wybierz kolejno opcje: MAINTENANCE (KONSERWACJA) > DIAGNOSTICS (DIAGNOSTYKA) > MODBUS STATUS (STATUS MODBUS) > BUS COM ERROR COUNT (LICZNIK BŁĘDÓW MAGISTRALI COM). Sprawdź liczbę błędów transmisji w magistrali.

Liczba błędów magistrali powinna zwiększać się za każdym razem, gdy analizator odczyta nieprawidłowy lub nieodebrany w całości komunikat Modbus. *Uwaga: Prawidłowe komunikaty, które nie są adresowane do urządzenia, nie zwiększają wartości licznika.*

- 4. W przypadku opcji Modbus RTU upewnij się, że przewód podłączony do zacisku D+ ma sygnał dodatni w porównaniu z przewodem podłączonym do zacisku D–, gdy magistrala jest w stanie bezczynności.
- **5.** Upewnij się, że w pozycji J15 na płycie głównej jest zainstalowana zworka stanowiąca zakończenie magistrali. Płyta główna znajduje się w obudowie układu elektronicznego na drzwiach za pokrywą ze stali nierdzewnej.
- 6. W przypadku opcji Modbus TCP otwórz interfejs WWW. Patrz temat *Configure the Modbus TCP/IP module (Konfigurowanie modułu TCP/IP magistrali Modbus)* w Instrukcji instalacji i obsługi. Jeśli interfejs sieciowy nie zostanie otwarty, wykonaj następujące czynności:
 - **a.** Upewnij się, że ustawienia sieciowe są poprawne.
 - **b.** Upewnij się, że złącza kabla Ethernet są w pełni zainstalowane w portach Ethernet.
 - c. Upewnij się, że dioda LED złącza Modbus TCP/IP (RJ45) świeci na zielono.

Rozdział 4 Obudowa części analitycznej

Rysunek 2 przedstawia pompy i komponenty zawarte w obudowie części analitycznej. Rysunek 3 przedstawia zawory zawarte w obudowie części analitycznej.

Rysunek 2 Obudowa części analitycznej – pompy i komponenty

1	Phosphorus (P) pump, LP2 (Pompa fosforu (P), LP2)	10	CO ₂ analyzer (Analizator CO2)
2	NF300 circulation pump, P2 (Pompa cyrkulacyjna NF300, P2)	11	Sample pump (Pompa próbek)
3	Reactor (Reaktor)	12	Oxidized sample catch pot/cleaning vessel (Naczynie do zbierania/czyszczenia utlenionych próbek)
4	Cooler (Chłodnica)	13	Acid pump (Pompa kwasowa)
5	Ozone generator (Generator ozonu)	14	Base pump (Pompa zasadowa)
6	Mass flow controller (MFC) (Sterownik przepływu masy)	15	Nitrogen (N) pump, LP1 (Pompa azotu (N), LP1)
7	Drain purge flowmeter (Przepływomierz oczyszczania odpływu)	16	HCl acid pump, LP5 (Pompa kwasu HCl, LP5)
8	Ozone destructor (Destruktor ozonu)	17	TP reagent pump, LP4 (Pompa odczynnika TP, LP4)
9	Oxygen regulator (Regulator ciśnienia tlenu)	18	Drain chamber (Komora odpływowa)

Rysunek 3 Obudowa części analitycznej – zawory

1	Boiler drain valve, LV9 (Zawór spustowy kotła, LV9)	11	NP sample valve, LV3 (Zawór próbkowy NP, LV3)
2	Boiler valve, LV8 (Zawór kotła, LV8)	12	DI water valve, LV2 (Zawór wody dejonizowanej, LV2)
3	Sample out valve, MV5 (Zawór wyjściowy próbki, MV5)	13	TN cleaning valve, LV1 (Zawór do czyszczenia TN, LV1)
4	Acid valve, MV6 (Zawór kwasowy, MV6)	14	Multi-stream valve, MV12–MV13 (Zawór wielostrumieniowy, MV12–MV13)
5	Base valve (optional) (Zawór zasadowy (opcjonalny))	15	Manual valve (Span Calibration valve), MV9 (Zawór ręczny (zawór do kalibrowania zakresu), MV9)
6	Sample (ARS) valve, MV4 (Zawór próbkowy (ARS), MV4)	16	Zero water valve (Zero Calibration valve), MV15 (Zawór wody zerowej (zawór kalibracji zera), MV15)
7	Injection valve, MV7 (Zawór wtryskowy, MV7)	17	Cleaning valve (Zawór do czyszczenia)
8	Non-return valve (check valve) (Zawór zwrotny (jednokierunkowy))	18	TP reagent valve, LV6 (Zawór odczynnika TP, LV6)
9	Exhaust valve, MV1 (Zawór wydechowy, MV1)	19	Cell valve, LV7 (Zawór ogniwa, LV7)
10) Sample loop valve, LV4 (Zawór pętli próbek, LV4)	20	Diversion valve, LV5(Zawór zmiany kierunku, LV5)

Rozdział 5 Elementy obudowy sterowniczej

Rysunek 4 Elementy obudowy sterowniczej (4)(2) (3) (1)1 -(15) Ell 6 (14) (7)(11) (10) (13) (12) (8) • 9

1 Zasilanie płyty głównej	9 Gniazdo kart SD/MMC
2 Zasilanie pomp i zaworów	10 Sygnałowa płytka drukowana
3 Płytka drukowana (PCB) zasilania sieciowego	11 Płytka drukowana przekaźników
4 Główny wyłącznik zasilania	12 Płytka drukowana układu pomocniczego/strumieniowego (opcja)
5 Terminale do połączeń z klientami	13 Płytka drukowana przekaźnika bezpieczeństwa
6 NP I/O PCB (płytka drukowana wejścia/wyjścia azotu i fosforu)	14 Izolatory 4 - 20 mA
7 Płyta główna	15 Płyta transformatora kotła TP i transformator kotła TP
8 Otwór dostępu do regulacji jasności ekranu LCD	

Rysunek 5 Elementy płyty głównej

1 Płyta główna

2 Bateria (CR2430, litowa, 3 V, 285 mAh)

Rozdział 6 Części zamienne i akcesoria

Niebezpieczeństwo uszkodzenia ciała. Stosowanie niezatwierdzonych części grozi obrażeniami ciała, uszkodzeniem urządzenia lub nieprawidłowym działaniem osprzętu. Części zamienne wymienione w tym rozdziale zostały zatwierdzone przez producenta.

Uwaga: Numery produktów i części mogą być różne w różnych regionach. Należy skontaktować się z odpowiednim dystrybutorem albo znaleźć informacje kontaktowe na stronie internetowej firmy.

AOSTRZEŻENIE

Materiały eksploatacyjne

Opis	llość	Nr poz.
Odczynnik kwasowy	20 L (5,2 galo na)	2985462
Odczynnik zasadowy	20 L (5,2 galo na)	2985562
Roztwór czyszczący TN	20 L (5,2 galo na)	2985662
Woda dejonizowana	20 L (5,2 galo na)	27362 ³
Kwas HCI, 3 N	20 L (5,2 galo na)	2037362
Odczynnik TP	20 L (5,2 galo na)	2986162

Części zamienne

Opis	Liczba do przechow ywania	Nr poz.
Zestaw do konserwacji 6-miesięcznej, analizator TOC TN TP B7000	1	19-KIT-119
Zestaw do konserwacji 12-miesięcznej, analizator TOC TN TP B7000	1	19-KIT-120
Zestaw do konserwacji 6-miesięcznej, pompa cyrkulacyjna NF300 z membraną powlekaną PTFE	1	19-KIT-110
Zestaw do konserwacji 24-miesięcznej, pompa obiegowa NF300	1	19-KIT-146
Pompa kwasu lub pompa zasady, SR25	0	19-ASF-004
Płyta główna ARM, wersja 9, zawiera: Procesor i wyświetlacz LCD	0	19-PCB-053
Analizator CO ₂ , Hastelloy, 0 - 10 000 ppm	0	19-CO2-007
Chłodnica	0	19-PCS-002
Wzmacniacz izolujący	1	10-KNK-001
Przetwornik przepływu masowego (MFC)	0	12-PCP-001
Grzałka destruktora ozonu	0	10-HAW-001
Pojemnik na utlenioną próbkę (OSCP), naczynie czyszczące, szkło laboratoryjne, 50 mm	1	10-KBS-019
Regulator tlenu, uwalnianie, 0 do 700 mbar	1	10-MAC-001
Płyta zasilająca, analizator 115 V AC, B7000	1	19-PCB-160
Płyta zasilająca, analizator 230 V AC, B7000	1	19-PCB-250

³ Niedostępne w UE. Alternatywnie użyć 27256 (4 I).

Części zamienne i akcesoria

Części zamienne (ciąg dalszy)

Opis	Liczba do przechow ywania	Nr poz.
Zestaw tulei PTFE i pierścieni zabezpieczających PEEK, 1 x 1/8 cala	1	10-EMT-118
Zestaw tulei PTFE i pierścieni zabezpieczających PEEK, 1 x 3/16 cala	5	10-EMT-136
Zestaw tulei PTFE i pierścieni zabezpieczających PEEK, 1 x 1/4 cala	5	10-EMT-114
Zestaw tulei PTFE i pierścieni zabezpieczających PEEK, 1 x 12 mm	1	10-EMT-120
Pompa próbek, WMM60	1 ⁴	19-MAX-004
Przewody rurowe, PFA, 1/8 cala śr. zewn. x 1/16 cala śr. wewn., długość 1 m	Długość 5 m	10-SCA-001
Przewody rurowe, PFA, 3/16 cala śr. zewn. x 1/8 cala śr. wewn., długość 1 m.	Długość 5 m	10-SCA-002
Przewody rurowe, PFA, 1/4 cala śr. zewn. x 4 mm śr. wewn., długość 1 m.	Długość 5 m	10-SCA-003
Przewody rurowe, PFA, 12 mm śr. zewn. x 10 mm śr. wewn., długość 1 m	Długość 1 m	10-SCA-004
Przewody rurowe, PFA, 1/4 cala śr. zewn. x 1/8 cala śr. wewn. (6,35 mm śr. zewn. x 3,18 mm śr. wewn.), długość 1 m.	Długość 5 m	10-SCA-006
Przewody rurowe EMPP (elastomerowo-propylenowe) o średnicy zewnętrznej 3,5 mm i średnicy wewnętrznej 1,5 mm, o długości 1 m	Długość 1 m	10-REH-001
Przewody rurowe, EMPP, 6.4 mm śr. zewn. x 3.2 mm śr. wewn., długość 1 m	Długość 2 m	10-REH-002
Przewody rurowe, EMPP, 5,6 mm śr. zewn. x 2,4 mm śr. wewn., długość 1 m.	Długość 1 m	10-REH-003
Zawór, N/O z wtyczką, typ 6606 Burkert	1	19-EMC-002
Zawór, Z/O z wtyczką, typ 6606 Burkert	1	19-EMC-003
Zawór zwrotny, 1 psi	1	10-SMR-001
Zawór, próbka, PEEK ARS	1 ⁴	10-EMT-004
Zawór, zawór zaciskowy SIRAI, kompletny	0	12-SIR-001
Zawór, typ 6606 Burkert C/O ze złączami rurowymi i korkiem	1	19-EMC-009
Zawór, typ 6606 Burkert N/C ze złączami rurowymi i korkiem	1	19-EMC-012
Komora odpływowa, szkło	1	10-KBS-010
Moduł fotometru dwuogniwowego ⁵ , TOC TN TP zawiera: kuwety pomiarowe i oświetlenie z lampą ksenonową	1	19-TND-002
Moduł fotometru dwuogniwowego ⁵ , TOC TP zawiera: kuwety pomiarowe i oświetlenie z lampą ksenonową	1	19-TND-003
Pompa kwasu HCl, SR25, przewód EMPP o średnicy wewnętrznej 1,6 mm	1 ⁴	19-ASF-006
Filtr fazy ciekłej	0	19-TNP-005
Kuweta pomiarowa, TN i TP , 45 x 0,5 mm	0	10-OPT-001
Kuweta pomiarowa, TN i TP , 45 x 1 mm	0	10-OPT-002
Kuweta pomiarowa, TN i TP , 45 x 2 mm	0	10-OPT-003
Kuweta pomiarowa, TN i TP , 45 x 5 mm	0	10-OPT-004
Kuweta pomiarowa, TN i TP , 45 x 10 mm	0	10-OPT-005
Pompa azotu (N), WMM60	1 ⁴	19-MAX-004
Płyta we/wy NP (81204290)	0	17-PCB-031

⁴ Wymieniane zwykle co 24 miesiące.
 ⁵ Skontaktuj się z działem pomocy technicznej, aby wybrać kuwety pomiarowe.

Części zamienne (ciąg dalszy)

Opis	Liczba do przechow ywania	Nr poz.
Pompa fosforu (P), WMM60	1 ⁴	19-MAX-004
Kocioł TP	1	19-TNP-002
Płyta transformatora kotła TP, 115 V	0	19-PCB-360
Płyta transformatora kotła TP, 230 V	0	19-PCB-350
Kocioł TPr, mieszalnik podgrzewany i urządzenie do usuwania bąbelków, szkło	1	10-KBS-023
Pompa odczynnika TP, SR25, przewód EMPP o średnicy wewnętrznej 1,6 mm	0	19-ASF-006
Przewody rurowe, Viton, 9,5 mm śr. zewn. x 5,5 mm śr. wewn., długość 25 mm	5	10-JWA-008

HACH COMPANY World Headquarters

P.O. Box 389, Loveland, CO 80539-0389 U.S.A. Tel. (970) 669-3050 (800) 227-4224 (U.S.A. only) Fax (970) 669-2932 orders@hach.com www.hach.com

HACH LANGE GMBH

Willstätterstraße 11 D-40549 Düsseldorf, Germany Tel. +49 (0) 2 11 52 88-320 Fax +49 (0) 2 11 52 88-210 info-de@hach.com www.de.hach.com

HACH LANGE Sàrl 6, route de Compois 1222 Vésenaz SWITZERLAND Tel. +41 22 594 6400 Fax +41 22 594 6499

© Hach Company/Hach Lange GmbH, 2020, 2024–2025. Wszystkie prawa zastrzeżone. Wydrukowano w Irlandia.