

RTC-Module für die Abwasserreinigung

Bedienungsanleitung

08/2016, Ausgabe 2

Kapitel 1 Technische Daten	. 3
Kapitel 2 Allgemeine Informationen	. 5
2.1 Sicherheitshinweise	. 5
2.1.1 Bedeutung von Gefahrenhinweisen	. 5
2.1.2 Warnhinweise	. 6
2.1.3 Zertifizierung	6
2.2 Produktübersicht	. 7
2.3 Produktkomponenten	. 7
Kanitel 3 Installation	a
3.1 Installieren des RTC-Moduls	. J
3.1.1. Versorgungsspannung zum RTC-Modul	g
3.2 Anschluss an die Prozessinstrumente	g
3.3 Anschluss an den Controller	10
3.4 Werte der RTC-Eingangs- und -ausgangsvariablen	10
Kenitel 4. Inhetrichnehme	10
A 1 Deputzerschnittetelle und Neuigetien	19
4.1 Benulzerschnillstelle und Navigation	19
4.1.1 Beschreibung des Tastenteids	19
4.2 DillZulugen eines Sensors. (Nur DTC Modulo)	19
4.2.1 Sontieren der Sensoren aus der Liste	20
4.2.2 LOSCHEIT EILIES SELISOIS AUS DEL LISTE	20
	21
Kapitel 5 Konfiguration	25
5.1 RTC P-Modul	25
5.1.1 Steuerungs- und Regelungsprogramme	25
5.1.2 Konfigurieren des RTC P-Moduls	25
5.1.3 Fällart	28
5.2 RIC N/DN-Modul	28
5.2.1 RTC N/DN-Modul-Regelungsprogramme	29
5.2.2 RTC N/DN-Modulversionen	29
5.2.3 Konfigurieren der N/DN-Regelungsversion	29
5.2.4 Konfigurieren der Stufenregelungsversion für Sauerstoff	32
5.2.5 Einstellen der Zeitranmen	33
5.2.6 Einstellen der Verstarkungstaktoren	33 24
5.2.7 Killenen für das Stoppen der Denkrinkation/venängenen Nitrifikation	ე4 ე⊿
5.2.0 Delasturiysabariyiyer O2-Soliwert wariteriu del Nitriikation	34 24
5.3.1 Konfigurieren des PTC SD Moduls und PTC ST Moduls	34
5.4 PTC N-Modul	30
5.4.1 Allgemeine Informationen	30
5.4.2 RTC N-Modul-Regelungsprogramme	30
5.4.3 RTC N-Modulversionen	<u>4</u> 0
5.4.4 Konfigurieren der N-Regelungsversion	40
5.4.5 Konfigurieren der O2-Regelungsversion	43
5.4.6	10
5.5 RTC SRT-Modul	44
5.5.1 Konfigurieren des RTC SRT-Moduls	44
Kapital & Fablarbababung	40
6.1 Warnungen	49 70
6.2 Fehler	+9 50
6.3 Wartungseinstellungen	50
ง.ง พงผานทางออกจเอกนทางอก	51

Kapitel 1 Technische Daten

Technische Daten	Details
Verschmutzungsgrad	3
Schutzklasse	III
Einbaukategorie	I
Schutzgrad	IP20
Befestigung	DIN-Schiene EN 50022 oder Tafelmontage
Betriebstemperatur	0 bis 50 °C
Lagerungstemperatur	–25 bis +85 °C (–13 bis +185 °F)
Relative Luftfeuchtigkeit	95 %, nicht kondensierend
Flash-Speicher	CF Compact-Flash-Karte
Schnittstelle	RJ 45 (Ethernet), 10/100 Mbit/s
Betriebssystem	Microsoft Windows [®] CE oder Embedded Standard
Netzteil	24 V DC oder 100-240 V AC über externe Stromversorgung
Garantie	1 Jahr (EU: 2 Jahre)

Änderungen vorbehalten.

Kapitel 2 Allgemeine Informationen

Der Hersteller ist nicht verantwortlich für direkte, indirekte, versehentliche oder Folgeschäden, die aus Fehlern oder Unterlassungen in diesem Handbuch entstanden. Der Hersteller behält sich jederzeit und ohne vorherige Ankündigung oder Verpflichtung das Recht auf Verbesserungen an diesem Handbuch und den hierin beschriebenen Produkten vor. Überarbeitete Ausgaben der Bedienungsanleitung sind auf der Hersteller-Webseite erhältlich.

2.1 Sicherheitshinweise

HINWEIS

Der Hersteller ist nicht für Schäden verantwortlich, die durch Fehlanwendung oder Missbrauch dieses Produkts entstehen, einschließlich, aber ohne Beschränkung auf direkte, zufällige oder Folgeschäden, und lehnt jegliche Haftung im gesetzlich zulässigen Umfang ab. Der Benutzer ist selbst dafür verantwortlich, schwerwiegende Anwendungsrisiken zu erkennen und erforderliche Maßnahmen durchzuführen, um die Prozesse im Fall von möglichen Gerätefehlern zu schützen.

Bitte lesen Sie dieses Handbuch komplett durch, bevor Sie dieses Gerät auspacken, aufstellen oder bedienen. Beachten Sie alle Gefahren- und Warnhinweise. Nichtbeachtung kann zu schweren Verletzungen des Bedieners oder Schäden am Gerät führen.

Stellen Sie sicher, dass die durch dieses Messgerät bereitgestellte Sicherheit nicht beeinträchtigt wird. Verwenden bzw. installieren Sie das Messsystem nur wie in diesem Handbuch beschrieben.

2.1.1 Bedeutung von Gefahrenhinweisen

AGEFAHR

Kennzeichnet eine mögliche oder drohende Gefahrensituation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führt.

Kennzeichnet eine mögliche oder drohende Gefahrensituation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führen kann.

AVORSICHT

Kennzeichnet eine mögliche Gefahrensituation, die zu geringeren oder moderaten Verletzungen führen kann.

HINWEIS

Kennzeichnet eine Situation, die, wenn sie nicht vermieden wird, das Gerät beschädigen kann. Informationen, die besonders beachtet werden müssen.

2.1.2 Warnhinweise

Lesen Sie alle am Gerät angebrachten Aufkleber und Hinweise. Nichtbeachtung kann Verletzungen oder Beschädigungen des Geräts zur Folge haben. Im Handbuch wird in Form von Warnhinweisen auf die am Gerät angebrachten Symbole verwiesen.

	Dieses Symbol am Gerät weist auf Betriebs- und/oder Sicherheitsinformationen im Handbuch hin.
A	Dieses Symbol weist auf die Gefahr eines elektrischen Schlages hin, der tödlich sein kann.
X	Elektrogeräte, die mit diesem Symbol gekennzeichnet sind, dürfen nicht im normalen öffentlichen Abfallsystem entsorgt werden. Senden Sie Altgeräte an den Hersteller zurück. Dieser entsorgt die Geräte ohne Kosten für den Benutzer.

2.1.3 Zertifizierung

Kanadische Vorschriften zu Störungen verursachenden Einrichtungen, IECS-003, Klasse A:

Entsprechende Prüfprotokolle hält der Hersteller bereit.

Dieses digitale Gerät der Klasse A erfüllt alle Vorgaben der kanadischen Normen für Interferenz verursachende Geräte.

Cet appareil numérique de classe A répond à toutes les exigences de la réglementation canadienne sur les équipements provoquant des interférences.

FCC Teil 15, Beschränkungen der Klasse "A"

Entsprechende Prüfprotokolle hält der Hersteller bereit. Das Gerät entspricht Teil 15 der FCC-Vorschriften. Der Betrieb unterliegt den folgenden Bedingungen:

- 1. Das Gerät darf keine Störungen verursachen.
- **2.** Das Gerät muss jegliche Störung, die es erhält, einschließlich jener Störungen, die zu unerwünschtem Betrieb führen, annehmen.

Änderungen oder Modifizierungen an diesem Gerät, die nicht ausdrücklich durch die für die Einhaltung der Standards verantwortliche Stelle bestätigt wurden, können zur Aufhebung der Nutzungsberechtigung für dieses Gerät führen. Dieses Gerät wurde geprüft, und es wurde festgestellt, dass es die Grenzwerte für digitale Geräte der Klasse A entsprechend Teil 15 der FCC-Vorschriften einhält. Diese Grenzwerte sollen einen angemessenen Schutz gegen gesundheitsschädliche Störungen gewährleisten, wenn dieses Gerät in einer gewerblichen Umgebung betrieben wird. Dieses Gerät erzeugt und nutzt hochfrequente Energie und kann diese auch abstrahlen, und es kann, wenn es nicht in Übereinstimmung mit der Bedienungsanleitung installiert und eingesetzt wird, schädliche Störungen der Funkkommunikation verursachen. Der Betrieb dieses Geräts in Wohngebieten kann schädliche Störungen verursachen. In diesem Fall muss der Benutzer die Störungen auf eigene Kosten beseitigen. Probleme mit Interferenzen lassen sich durch folgende Methoden mindern:

- 1. Trennen Sie das Gerät von der Stromversorgung, um sicherzugehen, dass dieser die Störungen nicht selbst verursacht.
- **2.** Wenn das Gerät an die gleiche Steckdose angeschlossen ist wie das gestörte Gerät, schließen Sie das störende Gerät an eine andere Steckdose an.
- 3. Vergrößern Sie den Abstand zwischen diesem Gerät und dem gestörten Gerät.
- 4. Ändern Sie die Position der Empfangsantenne des gestörten Geräts.
- 5. Versuchen Sie auch, die beschriebenen Maßnahmen miteinander zu kombinieren.

2.2 Produktübersicht

HINWEIS

Die Nutzung eines RTC-Moduls ersetzt nicht die regelmäßige Wartung. Insbesondere ist sicherzustellen, dass alle Geräte, die mit dem RTC-Controller verbunden sind, stets in einwandfreiem Zustand sind. Um sicherzustellen, dass diese Geräte zuverlässig korrekte Messwerte liefern, sind regelmäßige Wartungsarbeiten unerlässlich. Siehe Betriebsanleitung des entsprechenden Geräts.

RTC-Module sind universell einsetzbare Einheiten zur Anwendungssteuerung, mit denen sich Prozesse in Aufbereitungsanlagen verbessern lassen. RTC-Module sind als 1-Kanal-, 2-Kanal- und Mehrkanal-Systeme erhältlich.

RTC-Module mit mehreren Kanälen werden normalerweise auf Industrie-PCs (IPC) betrieben. Eingangs-/Ausgangssignale werden über den sc1000-Controller oder¹ mittels anderer Methoden wie OPC-Server² von SPS an RTC übertragen. Siehe Dokumentation zum sc1000. Siehe die im Lieferumfang der Hardware enthaltene Dokumentation.

2.3 Produktkomponenten

HINWEIS

Die vom Hersteller gelieferte Kombination von vormontierten Komponenten stellt für sich alleine keine funktionierende Einheit dar. Gemäß EU-Richtlinien wird diese Kombination von vormontierten Komponenten nicht mit einer CE- Kennzeichnung geliefert, und es wird für die Kombination keine EU-Konformitätserklärung erstellt. Die Richtlinienkonformität der Kombination von Komponenten ist jedoch messtechnisch nachweisbar.

Stellen Sie sicher, dass Sie alle Teile erhalten haben. Wenn Komponenten fehlen oder beschädigt sind, kontaktieren Sie bitte den Hersteller oder Verkäufer.

Abbildung 1 zeigt den sc1000 Controller mit industriellem PC. Version A zeigt die Installation des sc1000 mit einem Touchpanel-PC und Version B mit einem Box-PC mit DIN-Schiene

Abbildung 1 Installationsbeispiele Version A und Version B

1 sc1000 Controller	3 Touchpanel-PC
2 RTC-Kommunikationskarte (2x)	4 Box-PC mit DIN-Schiene

¹ Speicherprogrammierbare Steuerung

² Open Platform Communication (offene Kommunikationsplattform)

Potenzielle Stromschlaggefahr! Die in diesem Abschnitt des Handbuchs beschriebenen Eingriffe dürfen ausschließlich von qualifiziertem Personal vorgenommen werden.

A VORSICHT

Mögliche Gefahr für den Sensor oder Datensammler. Trennen Sie das Gerät stets vom Stromnetz, bevor Sie elektrische Verbindungen herstellen oder trennen.

3.1 Installieren des RTC-Moduls

Installieren Sie auf einer DIN-Schiene nur RTC-Versionen, die für DIN-Schienen vorgesehen sind. Montieren Sie IPC-Tafelmontageversionen gemäß den Spezifikationen des IPC-Herstellers, die im Lieferumfang der Hardware enthalten sind.

Befestigen Sie das Modul waagerecht. Stellen Sie sicher, dass das passive Belüftungselement ordnungsgemäß funktioniert. Es muss mindestens ein Abstand von 30 cm (1,2 in.) Abstand um das Modul gegeben sein.

Im Innenbereich kann das RTC-Modul in einen Schaltschrank eingebaut werden. Im Außenbereich benötigt das RTC-Modul ein geeignetes Gehäuse. Gehäuse-Spezifikationen finden Sie unter Technische Daten auf Seite 3.

Das RTC-Modul wird nur über den sc1000 Controller bedient. Siehe Betriebsanleitung für den sc1000 Controller. Die Softwareversion des sc1000 Controllers muss V3.20 oder höher sein.

Hardware kann ohne vorherige Ankündigung geändert werden. Anweisungen zur elektrischen Verdrahtung der Ein- und Ausgänge finden Sie in der Dokumentation zum sc1000 Controller und anderer Hardware. Weitere Informationen über RTC-Controller und Parametrierung sind auf der Website des Herstellers verfügbar.

Dieses Gerät ist für eine Höhe von maximal 2000 m ausgelegt. Die Verwendung des Geräts bei einer Höhe von über 2000 m führt möglicherweise zum Versagen der elektrischen Isolierung, was einen elektrischen Schlag herbeiführen kann. Benutzer sollten bei Bedenken den technischen Support kontaktieren.

3.1.1 Versorgungsspannung zum RTC-Modul

Lebensgefahr durch Stromschlag. Schließen Sie keine mit Gleichstrom betriebenen Geräte an Wechselstrom an.

Für alle Installationen ist ein externer Deaktivierungsschalter erforderlich. Siehe Tabelle 1.

Tabelle 1 Versorgungsspannung des RTC-Moduls

Technische Daten	Beschreibung
Spannung	24 V DC (-15 %/+20 %), 120 W (maximal)
Empfohlene Sicherung	C2
Mit Option für 110–240 V	240 V, 50-60 Hz, 120 VA (maximal)

3.2 Anschluss an die Prozessinstrumente

Die Messsignale des sc-Sensors, Analysators und andere Eingangssignale werden über die RTC-Kommunikationskarte im sc1000 an das RTC-Modul übermittelt. Informationen

über die Stromversorgung für den sc1000-Controller und die sc-Sensoren finden Sie in der entsprechenden Dokumentation für den sc1000-Controller und die sc-Sensoren.

3.3 Anschluss an den Controller

Schließen Sie den im Lieferumfang enthaltenen SUB-D-Anschluss an ein zweiadriges, geschirmtes Datenkabel (Signal- oder Buskabel) an. Lesen Sie Informationen zum Anschluss des Datenkabels in der zugehörigen Dokumentation nach.

3.4 Werte der RTC-Eingangs- und -ausgangsvariablen

Alle Eingangs- und Ausgangssignale sind mit dem sc1000 Controller oder direkt mit dem RTC-Modul verbunden. Siehe die zum RTC-Modul und dem sc1000 Controller gehörige Dokumentation.

Siehe Tabelle 2 und Tabelle 3 für die Messwerte des RTC P-Moduls.

Siehe Tabelle 4, Tabelle 5, Tabelle 6 und Tabelle 7 für die Messwerte des RTC N/DN-Moduls.

Siehe Tabelle 8 und Tabelle 9 für die Messwerte des RTC ST-Moduls und des RTC SD-Moduls.

Siehe Tabelle 10 und Tabelle 11 für die Messwerte des RTC N-Moduls.

Siehe Tabelle 12 und Tabelle 13 für die Messwerte des RTC SRT-Moduls.

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	PO ₄ -P	mg/l	1	Phosphatkonzentration
RTC-Eingang	Durchflussrate	L/s	1	Zulaufmenge
MESSUNG 1	Q 1	L/s	1	Abwasser-Durchflussmenge
ACTUAT VAR 2	Pdos 1	l/h	1	Sollwert Fällmitteldosierung
ACTUAT VAR 3	Digi 1	_	1	Digitalausgang für Impulspumpenbetrieb (EIN/AUS)
ACTUAT VAR 4	Preg 1	l/h	1	Interne Berechnungsvariable für Fällmittelmenge
ACTUAT VAR 5	ß' 1	_	1	Nur im Modus Steuerung: ß' ansonsten interne Berechnungsvariable
ACTUAT VAR 6	Qras 1	L/s	1	Rücklaufschlamm-Menge

Tabelle 2 RTC P-Modul (1-Kanal)

Tabelle 3 RTC P-Modul (2-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	PO ₄ -P	mg/l	1	Phosphatkonzentration
RTC-Eingang	PO ₄ -P	mg/l	2	Phosphatkonzentration
RTC-Eingang	Durchflussrate	L/s	1	Zulaufmenge
RTC-Eingang	Durchflussrate	L/s	2	Zulaufmenge
MESSUNG 1	Q 1	L/s	1	Abwasser-Durchflussmenge
MESSUNG 2	Q 2	L/s	2	Abwasser-Durchflussmenge
ACTUAT VAR 3	Pdos 1	l/h	1	Sollwert Fällmitteldosierung
ACTUAT VAR 4	Digi 1	_	1	Digitalausgang für Impulspumpenbetrieb (EIN/AUS)
ACTUAT VAR 5	Preg 1	l/h	1	Interne Berechnungsvariable für Fällmittelmenge
ACTUAT VAR 6	ß' 1	_	1	Nur im Modus Steuerung: ß' ansonsten interne Berechnungsvariable
ACTUAT VAR 7	Qras 1	L/s	1	Rücklaufschlamm-Menge

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
ACTUAT VAR 8	Pdos 2	l/h	2	Sollwert Fällmitteldosierung
ACTUAT VAR 9	Digi 2	—	2	Digitalausgang für Impulspumpenbetrieb (EIN/AUS)
ACTUAT VAR 10	Preg 2	l/h	2	Interne Berechnungsvariable für Fällmittelmenge
ACTUAT VAR 11	ß' 2	_	2	Nur im Modus Steuerung: ß' ansonsten interne Berechnungsvariable
ACTUAT VAR 12	Qras 2	L/s	2	Rücklaufschlamm-Menge

Tabelle 3 RTC P-Modul (2-Kanal) (fortgesetzt)

Tabelle 4 RTC N/DN-Modul (1-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	NH ₄ -N	mg/l	1	Ammonium-Konzentration in Belebungsbecken
RTC-Eingang	NO ₃ -N	mg/l	1	Nitrat-Konzentration in Belebungsbecken
RTC-Eingang	Durchflussrate	L/s	1	Optional: Durchflussmenge zur biologischen Aufbereitung
MESSUNG 1	Qin 1	%	1	Durchflussmenge
ACTUAT VAR 2	B_S 1	Stufe	1	Belüftungsstufe (EIN/AUS)
ACTUAT VAR 3	Nreg 1	_	1	Stickstoffbasierter interner Berechnungswert

Tabelle 5 RTC N/DN-Modul (2-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	NH ₄ -N	mg/l	1	Ammonium-Konzentration in Belebungsbecken
RTC-Eingang	NO ₃ -N	mg/l	1	Nitrat-Konzentration in Belebungsbecken
RTC-Eingang	NH ₄ -N	mg/l	2	Ammonium-Konzentration in Belebungsbecken
RTC-Eingang	NO ₃ -N	mg/l	2	Nitrat-Konzentration in Belebungsbecken
RTC-Eingang	Durchflussrate	L/s	1	Optional: Durchflussmenge zur biologischen Aufbereitung
RTC-Eingang	Durchflussrate	L/s	2	Optional: Durchflussmenge zur biologischen Aufbereitung
MESSUNG 1	Qin 1	%	beide	Durchflussmenge
ACTUAT VAR 2	B_S 1	Stufe	1	Belüftungsstufe (EIN/AUS)
ACTUAT VAR 3	Nreg 1	—	1	Stickstoffbasierter interner Berechnungswert
ACTUAT VAR 4	B_S 2	Stufe	2	Belüftungsstufe (EIN/AUS)
ACTUAT VAR 5	Nreg 2	—	2	Stickstoffbasierter interner Berechnungswert

Tabelle 6 RTC N/DN-Modul (1-Kanal mit DO-Option)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	NH ₄ -N	mg/l	1	Ammonium-Konzentration in Belebungsbecken
RTC-Eingang	NO ₃ -N	mg/l	1	Nitrat-Konzentration in Belebungsbecken
RTC-Eingang	DO	mg/l	1	Konzentration des gelösten Sauerstoffs in Belebungsbecken
RTC-Eingang	Durchflussrate	L/s	1	Optional: Durchflussmenge zur biologischen Aufbereitung
MESSUNG 1	Qin 1	%	1	Durchflussmenge
ACTUAT VAR 2	B_S 1	Stufe	1	Belüftungsstufe (EIN/AUS)
ACTUAT VAR 3	Nreg 1	—	1	Stickstoffbasierter interner Berechnungswert
ACTUAT VAR 4	Oreg 1	_	1	Sauerstoffbasierter interner Berechnungswert

Installation

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
ACTUAT VAR 5	A_S 1	%	1	Belüftungsintensität VFD 1
ACTUAT VAR 6	A_S 2	%	1	Belüftungsintensität VFD 2
ACTUAT VAR 12	Osetp 1	mg/l	1	O ₂ -Sollwert

Tabelle 6 RTC N/DN-Modul (1-Kanal mit DO-Option) (fortgesetzt)

Tabelle 7 RTC N/DN-Modul (2-Kanal mit DO-Option)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
RTC-Eingang	NH ₄ -N	mg/l	1	Ammonium-Konzentration in Belebungsbecken	
RTC-Eingang	NO ₃ -N	mg/l	1	Nitrat-Konzentration in Belebungsbecken	
RTC-Eingang	DO	mg/l	1	Konzentration des gelösten Sauerstoffs in Belebungsbecken	
RTC-Eingang	NH ₄ -N	mg/l	2	Ammonium-Konzentration in Belebungsbecken	
RTC-Eingang	NO ₃ -N	mg/l	2	Nitrat-Konzentration in Belebungsbecken	
RTC-Eingang	DO	mg/l	2	Konzentration des gelösten Sauerstoffs in Belebungsbecken	
RTC-Eingang	Durchflussrate	L/s	1	Optional: Durchflussmenge zur biologischen Aufbereitung	
RTC-Eingang	Durchflussrate	L/s	2	Optional: Durchflussmenge zur biologischen Aufbereitung	
MESSUNG 1	Qin 1	%	1	Durchflussmenge	
ACTUAT VAR 2	B_S 1	Stufe	1	Belüftungsstufe (EIN/AUS)	
ACTUAT VAR 3	Nreg 1	_	1	Stickstoffbasierter interner Berechnungswert	
ACTUAT VAR 4	Oreg 1	_	1	Sauerstoffbasierter interner Berechnungswert	
ACTUAT VAR 5	A_S 1	%	1	Belüftungsintensität VFD 1	
ACTUAT VAR 6	A_S 2	%	1	Belüftungsintensität VFD 2	
ACTUAT VAR 7	B_S 2	Stufe	2	Belüftungsstufe (EIN/AUS) B_S 2	
ACTUAT VAR 8	Nreg 2	—	2	Stickstoffbasierter interner Berechnungswert	
ACTUAT VAR 9	Oreg 2	_	2	Sauerstoffbasierter interner Berechnungswert	
ACTUAT VAR 10	A_S 1	%	2	Belüftungsintensität VFD 1	
ACTUAT VAR 11	A_S 2	%	2	Belüftungsintensität VFD 2	
ACTUAT VAR 12	Osetp 1	mg/l	1	O ₂ -Sollwert	
ACTUAT VAR 13	Osetp 2	mg/l	2	O ₂ -Sollwert	

Tabelle 8 RTC ST-Modul und RTC SD-Modul (1-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	TSSin 1	g/l	1	TS-Konzentration im Zulauf
RTC-Eingang	TSSeff 1	g/l	1	TS-Konzentration im Ablauf
RTC-Eingang	Feedflow 1	L/s	1	Tatsächliche Beschickungsmenge
RTC-Eingang	Polyflow 1	l/h	1	Tatsächliche Polymer-Flussrate
RTC-Eingang	Hopper 1	—	1	Pumpe (EIN/AUS)
MESSUNG 1	Qin 1	L/s	1	Tatsächliche Durchflussmenge zur Eindickung/Entwässerung
MESSUNG 2	Qavg 1	L/s	1	Durchschnittliche Durchflussmenge zur Eindickung/Entwässerung (wie im Menü definiert)
MESSUNG 3	Qdos 1	l/h	1	Polymer-Durchflussmenge

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
MESSUNG 4	Tsin 1	g/l	1	TS-Konzentration im Zulauf (modifiziert durch Mittelwertbildung)	
MESSUNG 5	Tsef 1	g/l	1	TS-Konzentration im Ablauf (modifiziert durch Mittelwertbildung und Betrieb der Trichterpumpe)	
ACTUAT VAR 6	Pdos 1	l/h	1	Berechneter Sollwert für Polymer-Fluss	
ACTUAT VAR 7	Fakt 1	g/kg	1	Berechnete spezifische Polymerdosis	
ACTUAT VAR 8	Feed 1	L/s	1	Berechnete Beschickungsmenge	

Tabelle 8 RTC ST-Modul und RTC SD-Modul (1-Kanal) (fortgesetzt)

Tabelle 9 RTC ST-Modul und RTC SD-Modul (2-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	TSSin 1	g/l	1	TS-Konzentration im Zulauf
RTC-Eingang	TSSeff 1	g/l	1	TS-Konzentration im Ablauf
RTC-Eingang	Feedflow 1	L/s	1	Tatsächliche Beschickungsmenge
RTC-Eingang	Polyflow 1	l/h	1	Tatsächliche Polymer-Flussrate
RTC-Eingang	Hopper 1	—	1	Pumpe (EIN/AUS)
RTC-Eingang	TSSin 2	g/l	2	TS-Konzentration im Zulauf
RTC-Eingang	TSSeff 2	g/l	2	TS-Konzentration im Ablauf
RTC-Eingang	Feedflow 2	L/s	2	Tatsächliche Beschickungsmenge
RTC-Eingang	Polyflow 2	l/h	2	Tatsächliche Polymer-Flussrate
RTC-Eingang	Hopper 2	—	2	Pumpe (EIN/AUS)
MESSUNG 1	Qin 1	L/s	2	Tatsächliche Durchflussmenge zur Eindickung/Entwässerung
MESSUNG 2	Qavg 1	L/s	1	Durchschnittliche Durchflussmenge zur Eindickung/Entwässerung (wie im Menü definiert)
MESSUNG 3	Qdos 1	l/h	1	Polymer-Durchflussmenge
MESSUNG 4	Tsin 1	g/l	1	TS-Konzentration im Zulauf (modifiziert durch Mittelwertbildung)
MESSUNG 5	Tsef 1	g/l	1	TS-Konzentration im Ablauf (modifiziert durch Mittelwertbildung und Betrieb der Trichterpumpe)
MESSUNG 6	Qin 2	L/s	2	Tatsächliche Durchflussmenge zur Eindickung/Entwässerung
MESSUNG 7	Qavg 2	L/s	2	Durchschnittliche Durchflussmenge bis zur Eindickung/Entwässerung
MESSUNG 8	Qdos 2	l/h	2	Polymer-Durchflussmenge
MESSUNG 9	Tsin 2	g/l	2	TS-Konzentration im Zulauf (modifiziert durch Mittelwertbildung)
MESSUNG 10	Tsef 2	g/l	2	TS-Konzentration im Ablauf (modifiziert durch Mittelwertbildung und Betrieb der Trichterpumpe)
ACTUAT VAR 11	Pdos 1	l/h	1	Berechneter Sollwert für Polymer-Fluss
ACTUAT VAR 12	Fakt 1	g/kg	1	Berechnete spezifische Polymerdosis
ACTUAT VAR 13	Feed 1	L/s	1	Berechnete Beschickungsmenge
ACTUAT VAR 14	Pdos 2	l/h	2	Berechneter Sollwert für Polymer-Fluss
ACTUAT VAR 15	Fakt 2	g/kg	2	Berechnete spezifische Polymerdosis
ACTUAT VAR 16	Feed 2	L/s	2	Berechnete Beschickungsmenge

Installation

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
RTC-Eingang	NH ₄ -N_in 1	mg/l	1	NH ₄ -N-Konzentration im Zulauf des Belebungsbeckens	
RTC-Eingang	NH ₄ -N_eff 1	mg/l	1	NH ₄ -N-Konzentration im Ablauf des Belebungsbeckens	
RTC-Eingang	TSS 1	g/l	1	TS-Konzentration in Belebungsbecken	
RTC-Eingang	DO 1	mg/l	1	Sauerstoff-Konzentration im Belebungsbecken	
RTC-Eingang	Zulauf 1	L/s	1	Zulaufmenge Belebungsbecken	
RTC-Eingang	IRC 1	L/s	1	Durchflussmenge interne Rezirkulation	
RTC-Eingang	RAS 1	L/s	1	Durchflussmenge Rücklaufschlamm	
MESSUNG 1	_	%	1	Konzentration Nitrifikanten	
MESSUNG 2	SRT	Tage	1	Aerobes Schlammalter	
ACTUAT VAR 3	NH4-N	kg/h	1	Zu nitrifizierende NH ₄ -N-Fracht im Zulauf	
ACTUAT VAR 4	NffO 1	mg/l	1	Aus Fracht im Zulauf berechneter O2-Bedarf	
ACTUAT VAR 5	Osetp 1	mg/l	1	O2-Sollwert	
ACTUAT VAR 6	Oreg 1	—	1	Sauerstoffbasierter interner Berechnungswert	
ACTUAT VAR 7	B_S 1	Stufe	1	Belüftungsstufe	
ACTUAT VAR 8	A_S 1	%	1	Belüftungsintensität VFD 1	
ACTUAT VAR 9	A_S 2	%	1	Belüftungsintensität VFD 2	

Tabelle 10 RTC N-Modul (1-Kanal)

Tabelle 11 RTC N-Modul (2-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	NH ₄ -N_in 1	mg/l	1	NH ₄ -N-Konzentration im Zulauf des Belebungsbeckens
RTC-Eingang	NH ₄ -N_eff 1	mg/l	1	NH ₄ -N-Konzentration im Ablauf des Belebungsbeckens
RTC-Eingang	TSS 1	g/l	1	TS-Konzentration in Belebungsbecken
RTC-Eingang	DO 1	mg/l	1	Sauerstoff-Konzentration im Belebungsbecken
RTC-Eingang	Zulauf 1	L/s	1	Zulaufmenge Belebungsbecken
RTC-Eingang	IRC 1	L/s	1	Durchflussmenge interne Rezirkulation
RTC-Eingang	RAS 1	L/s	1	Durchflussmenge Rücklaufschlamm
RTC-Eingang	NH ₄ -N_in 2	mg/l	2	NH ₄ -N-Konzentration im Zulauf des Belebungsbeckens
RTC-Eingang	NH ₄ -N_eff 2	mg/l	2	NH ₄ -N-Konzentration im Ablauf des Belebungsbeckens
RTC-Eingang	TSS 2	g/l	2	TS-Konzentration in Belebungsbecken
RTC-Eingang	DO 2	mg/l	2	Sauerstoff-Konzentration im Belebungsbecken
RTC-Eingang	Zulauf 2	L/s	2	Zulaufmenge Belebungsbecken
RTC-Eingang	IRC 2	L/s	2	Durchflussmenge interne Rezirkulation
RTC-Eingang	RAS 2	L/s	2	Durchflussmenge Rücklaufschlamm
MESSUNG 1	_	%	1	Konzentration Nitrifikanten
MESSUNG 2	SRT	Tage	1	Aerobes Schlammalter
ACTUAT VAR 3	NH4-N	kg/h	1	Zu nitrifizierende NH ₄ -N-Fracht im Zulauf
ACTUAT VAR 4	NffO 1	mg/l	1	Aus Fracht im Zulauf berechneter O2-Bedarf
ACTUAT VAR 5	Osetp 1	mg/l	1	O2-Sollwert

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
ACTUAT VAR 6	Oreg 1	_	1	Sauerstoffbasierter interner Berechnungswert	
ACTUAT VAR 7	B_S 1	Stufe	1	Belüftungsstufe	
ACTUAT VAR 8	A_S 1	%	1	Belüftungsintensität VFD 1	
ACTUAT VAR 9	A_S 2	%	1	Belüftungsintensität VFD 2	
ACTUAT VAR 10	NH4-N	kg/h	2	Zu nitrifizierende NH ₄ -N-Fracht im Zulauf	
ACTUAT VAR 11	NffO 2	mg/l	2	Aus Fracht im Zulauf berechneter O2-Bedarf	
ACTUAT VAR 12	Osetp 2	mg/l	2	O2-Sollwert	
ACTUAT VAR 13	Oreg 2	—	2	Sauerstoffbasierter interner Berechnungswert	
ACTUAT VAR 14	B_S 2	Stufe	2	Belüftungsstufe	
ACTUAT VAR 15	A_S 1	%	2	Belüftungsintensität VFD 1	
ACTUAT VAR 16	A_S 2	%	2	Belüftungsintensität VFD 2	

Tabelle 11 RTC N-Modul (2-Kanal) (fortgesetzt)

Tabelle 12 RTC SRT-Modul (1-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
RTC-Eingang	TSS AE 1	g/l	1	TS-Konzentration Belebungsbecken	
RTC-Eingang	TSS SAS 1	g/l	1	TS-Konzentration im Überschussschlamm	
RTC-Eingang	TSS eff 1	g/l	1	TS-Konzentration Ablauf Nachklärung	
RTC-Eingang	DO1_1	mg/l	1	O2-Konzentration Belüftungszone 1	
RTC-Eingang	DO1_2	mg/l	1	Optional: O ₂ -Konzentration Belüftungszone 2	
RTC-Eingang	DO1_3	mg/l	1	Optional: O ₂ -Konzentration Belüftungszone 3	
RTC-Eingang	DO1_4	mg/l	1	Optional: O ₂ -Konzentration Belüftungszone 4	
RTC-Eingang	SAS flow 1	mg/l	1	Durchflussmenge Überschussschlamm	
RTC-Eingang	Flow 1	mg/l	1	Durchflussmenge Zulauf	
MESSUNG 1	Qeff 1	L/s	1	Durchflussmenge im Ablauf	
MESSUNG 2	Qsas 1	L/s	1	Durchflussmenge Überschussschlamm	
MESSUNG 3	Qsasm 1	kg/h	1	Schlammmasse in Überschussschlamm	
MESSUNG 4	Vol 1	m ³	1	Tatsächlich belüftetes Volumen	
MESSUNG 5	Vols 1	m ³	1	Mittelwert für belüftetes Volumen während des letzten Schlammalters	
MESSUNG 6	TSmL 1	g/l	1	Mittelwert TS-Konzentration in Belebungsbecken während des letzten Schlammalters	
MESSUNG 7	TSs s1	kg	1	Schlammmasse in Belüftungsbecken, Mittelwert für letztes Schlammalter	
MESSUNG 8	SRT 1	Tage	1	Berechnetes tatsächliches aerobes Schlammalter	
ACTUAT VAR 9	SRTSP 1	Tage	1	Sollwert für das aerobe Schlammalter	
ACTUAT VAR 10	Qs c1	L/s	1	Theoretischer Sollwert für den Überschussschlammabzug (Durchflussmenge)	
ACTUAT VAR 11	Qs 1	L/s	1	Effektiver Sollwert für den Überschussschlammfluss einschließlich aller voreingestellten Grenzwerte	

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
ACTUAT VAR 12	Digi 1	keine Einheit	1	EIN/AUS-Signal für die Überschussschlammabzugspumpe	
ACTUAT VAR 13	msaSP 1	kg/d	1	Sollwert für den Abzug der Schlammmasse	
ACTUAT VAR 14	msasd 1	kg/d	1	Abzug der Überschuss-Schlammmasse während der letzten 24 Stunden	
ACTUAT VAR 15	msash 1	kg/h	1	Tatsächlicher Abzug der Überschuss-Schlammmasse	
ACTUAT VAR 16	msas 1	kg	1	Abzug der Überschluss-Schlammasse während des aktuellen Kalendertages	

 Tabelle 12
 RTC SRT-Modul (1-Kanal) (fortgesetzt)

Tabelle 13 RTC SRT-Modul (2-Kanal)

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung
RTC-Eingang	TSS AE 1	g/l	1	TS-Konzentration Belebungsbecken
RTC-Eingang	TSS SAS 1	g/l	1	TS-Konzentration im Überschussschlamm
RTC-Eingang	TSS eff 1	g/l	1	TS-Konzentration Ablauf Nachklärung
RTC-Eingang	DO1_1	mg/l	1	O2-Konzentration Belüftungszone 1
RTC-Eingang	DO1_2	mg/l	1	Optional: O ₂ -Konzentration Belüftungszone 2
RTC-Eingang	DO1_3	mg/l	1	Optional: O ₂ -Konzentration Belüftungszone 3
RTC-Eingang	DO1_4	mg/l	1	Optional: O ₂ -Konzentration Belüftungszone 4
RTC-Eingang	SAS flow 1	mg/l	1	Durchflussmenge Überschussschlamm
RTC-Eingang	Flow 1	mg/l	1	Durchflussmenge Zulauf
RTC-Eingang	TSS AE 2	g/l	2	TS-Konzentration Belebungsbecken
RTC-Eingang	TSS SAS 2	g/l	2	TS-Konzentration im Überschussschlamm
RTC-Eingang	TSS eff 2	g/l	2	TS-Konzentration Ablauf Nachklärung
RTC-Eingang	DO2_/1	mg/l	2	O2-Konzentration Belüftungszone 1
RTC-Eingang	DO2_2	mg/l	2	Optional: O ₂ -Konzentration Belüftungszone 2
RTC-Eingang	DO2_3	mg/l	2	Optional: O ₂ -Konzentration Belüftungszone 3
RTC-Eingang	DO2_4	mg/l	2	Optional: O ₂ -Konzentration Belüftungszone 4
RTC-Eingang	SAS flow 2	mg/l	2	Durchflussmenge Überschussschlamm
RTC-Eingang	Flow 2	mg/l	2	Durchflussmenge Zulauf
MESSUNG 1	Qeff 1	L/s	1	Durchflussmenge im Ablauf
MESSUNG 2	Qsas 1	L/s	1	Durchflussmenge Überschussschlamm
MESSUNG 3	SRT 1	Tage	1	Berechnetes tatsächliches aerobes Schlammalter
MESSUNG 4	Qeff 2	L/s	2	Durchflussmenge im Ablauf
MESSUNG 5	Qsas 2	L/s	2	Durchflussmenge Überschussschlamm
MESSUNG 6	SRT 2	Tage	2	Berechnetes tatsächliches aerobes Schlammalter
ACTUAT VAR 7	SRTSP 1	Tage	1	Sollwert für das aerobe Schlammalter
ACTUAT VAR 8	Qs 1	L/s	1	Effektiver Sollwert für den Überschussschlammfluss einschließlich aller voreingestellten Grenzwerte
ACTUAT VAR 9	Digi 1	keine Einheit	1	EIN/AUS-Signal für die Überschussschlammabzugspumpe
ACTUAT VAR 10	msaSP 1	kg/d	1	Sollwert für den Abzug der Schlammmasse

Tag-Bezeichnung	Parameter	Einheit	Kanal	Beschreibung	
ACTUAT VAR 11	msas 1	kg	1	Abzug der Überschluss-Schlammasse während des aktuellen Kalendertages	
ACTUAT VAR 12	SRTSP 2	Tage	2	Sollwert für das aerobe Schlammalter	
ACTUAT VAR 13	Qs 2	L/s	2	Effektiver Sollwert für den Überschussschlammfluss einschließlich aller voreingestellten Grenzwerte	
ACTUAT VAR 14	Digi 2	keine Einheit	2	EIN/AUS-Signal für die Überschussschlammabzugspumpe	
ACTUAT VAR 15	msaSP 2	kg/d	2	Sollwert für den Abzug der Schlammmasse	
ACTUAT VAR 16	msas 2	kg	2	Abzug der Überschluss-Schlammasse während des aktuellen Kalendertages	

Tabelle 13 RTC SRT-Modul (2-Kanal) (fortgesetzt)

Kapitel 4 Inbetriebnahme

4.1 Benutzerschnittstelle und Navigation

4.1.1 Beschreibung des Tastenfelds

Eine Beschreibung des Tastenfelds und Informationen zur Navigation finden Sie unterAbbildung 2.

Abbildung 2 Beschreibung des Tastenfelds

1	Eingeben: Speichert die Einstellung und beendet den aktuellen Bildschirm und kehrt in das Menü CONFIGURE (Konfigurieren) zurück.	4	Löschen: Entfernt einen Sensor aus der Auswahl
2	Abbrechen: Beendet den aktuellen Bildschirm und kehrt zum Menü CONFIGURE (Konfigurieren) zurück, ohne die Einstellung zu speichern.	5	AUFWÄRTS- und ABWÄRTS-Pfeiltasten: Verschiebt die Sensoren in der Liste nach oben oder unten.
3	Hinzufügen: Fügt der Auswahl einen neuen Sensor hinzu		

4.2 Hinzufügen eines Sensors

Hinweis: Stellen Sie sicher, dass im sc1000-Sensormodul eine RTC-Kommunikationskarte installiert ist.

1. Schließen Sie den Controller an. Siehe die Controllerdokumentation.

sind für PROGNOSYS verfügbar.

- Wählen Sie MAIN MENU>RTC MODULES/PROGNOSYS>RTC MODULES>RTC>CONFIGURE>SELECT SENSOR (Hauptmenü>RTC-Module/Prognosys>RTC-Module>RTC>Konfigurieren>Sensor auswählen) aus.
- **3.** Drücken Sie **Add** (Hinzufügen). Siehe Abbildung 3. Es wird eine Liste mit allen Netzwerkverbindungen angezeigt.
- Wählen Sie den für das RTC-Modul geeigneten Sensor aus, und drücken Sie Enter (Eingabetaste). Der Sensor wird in der Sensorliste angezeigt. *Hinweis:* Die schwarzen Sensornamen sind für ein RTC-Modul verfügbar. Die roten Sensornamen sind nicht für ein RTC-Modul verfügbar. Sensoren, deren Namen mit einem "(p)" gekennzeichnet sind,

Hinweis: Die mA-Eingangskarten und die PROFIBUS-Karte (Bestellnr. YAB103) können RTC-Eingangssignale übermitteln.

- Drücken Sie Add (Hinzufügen), um weitere Sensoren oder Eingangskarten aus der Liste hinzuzufügen. Ausgewählte Sensoren werden in grau dargestellt. Zum Festlegen der Sensorreihenfolge siehe Abbildung 4 auf Seite 20. Zum Entfernen eines Sensors siehe Abbildung 5 auf Seite 21.
- 6. Drücken Sie Enter (Eingabetaste), um die Liste zu akzeptieren.

Abbildung 3 Sensoren hinzufügen

1 Sensor auswählen	4 Hinzufügen
2 Akzeptieren	5 Zusätzlichen Sensor oder Eingangskarte auswählen
3 Sensorliste	

4.2.1 Sortieren der Sensoren (Nur RTC-Module)

Die Reihenfolge der Sensoren für die Messwerte ist im RTC-Modul programmiert. Um die Sensoren in der für das RTC-Modul angegebenen Reihenfolge zu sortieren, verschieben Sie den ausgewählten Sensor mit den AUFWÄRTS- und ABWÄRTS-Pfeiltasten. Siehe Abbildung 4.

Abbildung 4 Sensoren sortieren

1 Sensor auswählen

2 AUFWÄRTS- und ABWÄRTS-Pfeiltasten

4.2.2 Löschen eines Sensors aus der Liste

Drücken Sie **Löschen**, um einen ausgewählten Sensor aus der Liste zu löschen. Siehe Abbildung 5.

Abbildung 5 Sensor löschen

	(2) (1)	AMTAX SC 1134000 1 0000000009 NITRATAXPLUS SC 444 2 00000000009	(p) 4 (p) 3
1	Sensor auswählen		3 Sensor löschen
2	Ohne Änderungen zurückgehen		

4.3 Touch-Bildschirm IPC als Benutzeroberfläche

Verwenden Sie einen Touch-Bildschirm IPC zum Anzeigen von Messungen, berechneten Sollwerten und Trendmessungen sowie zur Eingabe von Steuerungsparametern. Schalten Sie den IPC ein. Abbildung 6 zeigt den RTC-Bildschirm an.

1	Anlagenansicht zeigt die RTC-gesteuerte Prozessübersicht an.	7	Mit P-RTC bzw. N/DN-RTC wählen Sie den RTC- Bildschirm aus.
2	Übergangsansicht zeigt den Visualisierungsbildschirm an.	8	Zeigt die Messsignale an. Schwarze Signale sind gültig, rote Signale sind ungültig.
3	RTC-Einstellungen zeigt die Steuerungseinstellungen an.	9	Zeigt den Sollwert an.
4	Minimieren zeigt den Betriebssystem-Bildschirm an.	10	Zeigt weitere berechnete Parameter an.
5	Beenden schließt das Steuerprogramm.	11	1 Belüftungsbecken 1
6	Ein RTC-Lifesignal blinkt, wenn RTC in Betrieb ist.		

1. Wählen Sie RTC-Einstellungen aus, um das Menü zu öffnen. Siehe Abbildung 7.

2. Wählen Sie Anmelden aus, um einen Parameter zu ändern (siehe Abbildung 8).

Abbildung 7 RTC-Einstellungen

RTC Settings	N/DN Parar	nete	rs		насн			
	NITRI MIN 1	DE	NI MIN 1		NITRI MIN 2	DE	ENI MIN 2	
	30 min	3	0 min		30 min	:	30 min	
	NITRI MAX 1	DE	NI MAX 1		NITRI MAX 2	DE	INI MAX 2	
N/DN Control	110 min	9	10 min	(4)	110 min		60 min	
	NH4-N TARGET 1	NH4	HN MAX 1		NH4-N TARGET 2	NH	4-N MAX 2	
Control Param 2	1.5 mg/L		6.00		1.5 mg/L		6.00	
Fallback	NO3-N TARGET 1	NH4	I-N MIN 1		NO3-N TARGET 2	NH	4-N MIN 2	
Failback	3.0 mg/L	0.4	10 mg/L		3.0 mg/L	0.4	40 mg/L	
02-Control	P GAIN NH4 + NO3 1	NO	3-N MIN 1		P GAIN NH4 + NO3	2 NO	3-N MIN 2	
	1.50 1/(mg/L)		0.00		1.50 1/(mg/L)		0.00	
PRTC 1	NH4/NO3 WEIGHT 1				NH4/NO3 WEIGHT	2		
	2.00				2.00			
Control Param	DERIVITIME NH4 1				DERIVITIME NH4 2			
FALLBACK 3	0.0 min				0.0 min			
			Im	pulse Aeration				
	INTERVALL 1	16	min		INTERVALL 2	15	min	
	DURATION 1	120	s		DURATION 2	120	s	
	INTENSITY 1	50.0	%		INTENSITY 2	50.0	%	
1 Mit N/DN-RTC bzw. P-RTC wähle	n Sie den RTC-F	Realer	3 Fr	satz legt die Ersat	zstrategien fest			

1	Mit N/DN-RTC bzw. P-RTC wählen Sie den RTC-Regler aus.	3	Ersatz legt die Ersatzstrategien fest.
2	Regelparameter legt den RTC-Regelparameter fest.	4	Wählen Sie diese Option aus, um einen Parameter zu ändern.

Abbildung 8 Wählen Sie die Anmeldeoption aus, um einen Parameter zu ändern.

		Login		[×
		User Adm	inistrator	•	
		Password			
		ОК	Cancel	show Keybo	ard
Plant View	Transition View	RTC Settings	Login	Save	Cancel

Kapitel 5 Konfiguration

Machen Sie sich mit der Konfiguration des SC Controllers vertraut, bevor Sie das Instrument zusammen mit einem SC Controller einsetzen. Erlernen Sie mithilfe der Dokumentation des SC Controllers die Navigation durch das Menü und den korrekten Einsatz der Menüfunktionen. Jedes RTC-Modul im sc1000 zeigt dieselben Menüeinträge an, mit Ausnahme der Einstellungen im Menü KONFIGURIEREN. Gehen Sie wie folgt vor, um das RTC-Modul zu konfigurieren.

- 1. Rufen Sie das MAIN MENU (HAUPTMENÜ) auf.
- Wählen Sie RTC MODULES / PROGNOSYS > RTC MODULE > RTC > CONFIGURE (RTC MODULE / PROGNOSYS > RTC MODUL > RTC > KONFIGURIEREN) aus.
- 3. Wählen Sie das zu verwendende RTC-Modul aus.
 - Siehe RTC P-Modul auf Seite 25 für die Konfiguration des RTC P-Moduls.
 - Siehe RTC N/DN-Modul auf Seite 28 f
 ür die Konfiguration des RTC N/DN-Moduls.
 - Siehe RTC SD-Modul und RTC ST-Modul auf Seite 34 f
 ür die Konfiguration des RTC SD-Moduls und RTC ST-Moduls.
 - Siehe RTC N-Modul auf Seite 39 f
 ür die Konfiguration des RTC N-Moduls.
 - Siehe RTC SRT-Modul auf Seite 44 f
 ür die Konfiguration des RTC SRT-Moduls.

Hinweis: Stellen Sie sicher, dass alle nicht analytischen EINGANGS-/AUSGANGS-Signale für die standardisierten kombinierten RTC-Module in den E/A-Modulen des sc1000 oder mittels anderer Übertragungsverfahren zwischen SPS und RTC, beispielsweise per OPC-Server, konfiguriert sind.

5.1 RTC P-Modul

5.1.1 Steuerungs- und Regelungsprogramme

Steuerung: Für die Steuerung der Fällmitteldosis ist der Messpunkt für die Phosphatkonzentration dem Fällmittel-Dosierungspunkt vorgeschaltet.

Regelung: Für die Regelung der Fällmitteldosis ist der Messpunkt für die Phosphatkonzentration dem Fällmittel-Dosierungspunkt nachgeschaltet.

Der Messpunkt für die Durchflussmenge befindet sich im Zulauf der Kläranlage.

Wenn die Messwerte für die Durchflussmenge und/oder Phosphatkonzentration vorübergehend nicht verfügbar sind, verwendet das System automatisch eine gespeicherte Dosierungsganglinie.

5.1.2 Konfigurieren des RTC P-Moduls

Das Modul ist als Steuerung und als Regelung verfügbar, jeweils als 1-Kanal- oder 2-Kanal-Version. Außerdem ist eine 2-Kanal-Version mit dem ersten Kanal als Regelung und dem zweiten Kanal als Steuerung verfügbar.

Die 2-Kanal-Version kann zwei Phosphatfällmittel unabhängig regeln. Alle Hauptparameter werden zweimal angezeigt und als Kanal 1 und Kanal 2 gekennzeichnet.

- 1. Rufen Sie SENSORAUSWAHL auf, und wählen Sie den für die Steuerung oder Regelung installieren Sensor aus. Siehe Hinzufügen eines Sensors auf Seite 19.
- **2.** Wenn eine Steuerung installiert ist, legen Sie die FÄLLART fest, Vorfällung, Simultanfällung oder Nachfällung.
- 3. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.
- **4.** Wählen Sie SOLLWERT PO4-P aus, um den Sollwert für ortho-Phosphat im Ablaufstrom (in mg/L) einzugeben.

Konfiguration

5. Wählen Sie bei einer Steuerungsversion eine Option aus. Für die Konfiguration einer Regelungsversion fahren Sie mit Schritt 6 fort.

Optionen	Beschreibung
KORREKTUR DOSIERMENGE	Gibt die prozentuale Korrektur der Fällmittel-Dosiermenge an. Die ermittelte Dosiermenge wird durch den ausgewählten Prozentsatz geändert.
BIO-P	Gibt die prozentuale biologische Phosphatelimination nach dem Zulauf an.

6. Wählen Sie bei einer Regelungsversion eine Option aus.

Optionen	Beschreibung
FAKT P REGLER	Gibt den proportionalen Verstärkungsfaktor der Fällmittel-Dosisregelung an. Ein hoher FAKT P REGLER führt zu schnellen Änderungen der Dosierung und somit zu einer hohen Regelungsgeschwindigkeit.
NACHSTELLZEIT	Gibt die Nachstellzeit der Regelung (in Minuten) an. Eine kurze Nachstellzeit kann zu einer Überschwingung oder starken Schwingungen der PO ₄ -P-Konzentration führen. Bei Zunahme der Nachstellzeit wird die Schwingung geringer. Um den Nachstellfaktor des Reglers zu deaktivieren, geben Sie NACHSTELLZEIT = 0 ein.
VORHALTZEIT	Gibt die Vorhaltzeit der Regelung (in Minuten) an. Die VORHALTZEIT ermöglicht es dem RTC-Modul, nicht nur auf die absoluten Abweichungen zwischen Zielwert und Sollwert zu reagieren, sondern auch auf die Geschwindigkeit, mit der der Phosphatgehalt steigt oder sinkt.

- 7. Wählen Sie MIN DOSIERMENG aus, um die Mindestdurchflussmenge der Dosierpumpe (in L/Stunde) festzulegen.
- 8. Wählen Sie MAX DOSIERMENG aus, um die maximale Durchflussmenge der Dosierpumpe (in L/Stunde) festzulegen.
- **9.** Wählen Sie GANGLINIEN aus; diese Option ist nur während eines Messsignalausfalls aktiv. Wählen Sie eine Option.

Optionen	Beschreibung
DOSIERUNG KANAL 1	Wird als Standardstrategie für die Fällmitteldosierung verwendet, wenn die Phosphatmessung und/oder das Durchflussmengensignal nicht verfügbar ist (Angabe in L/Stunde).
DOSIERUNG KANAL 2	Wird als Standardstrategie für die Fällmitteldosierung verwendet, wenn die Phosphatmessung und/oder das Durchflussmengensignal nicht verfügbar ist (Angabe in L/Stunde).
WOCH.GANGLINIE	Gibt die prozentualen täglichen Durchschnittswerte der Phosphatfracht an (Volumen x Konzentration).

10. Wählen Sie EIN- AUSGÄNGE > DOSIERPUMPE aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.

Optionen	Beschreibung
MINPUMPBEREICH	Gibt den Mindestwert für den Durchflussmengenbereich (in L/Stunde) an.
MAXPUMPBEREICH	Gibt den Höchstwert für den Durchflussmengenbereich (in L/Stunde) an.

Optionen	Beschreibung
STELLZYKLUS	Umfasst die EIN- und AUS-Zeit der Pumpe (in Sekunden). Die Stellzykluszeit wirkt sich auf die EIN/AUS-Dauer im Impuls/Pause- Modus aus. Beispiel: Bei einer Stellzykluszeit von 100 Sekunden und einem Dosissteuerungswert von 60 % wird das Aktivierungsintervall der Dosierpumpe auf 60 Sekunden und das Deaktivierungsintervall auf 40 Sekunden gesetzt. Kurze Zykluszeiten erhöhen die Wechselfrequenz.
MIN LAUFZEIT	Gibt die Mindest-EIN-Zeit der Pumpe (in Sekunden) an. Stellen Sie die MIN LAUFZEIT ein, um Beschädigungen der Dosierpumpe zu vermeiden. Die Pumpe läuft mindestens für die Dauer der hier eingestellten Zeitspanne. Der Wert muss ein Bruchteil der Stellzykluszeit sein.

11. Wählen Sie EIN- AUSGÄNGE > DURCHFLUSSMENG. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option. *Hinweis:*

Optionen	Beschreibung
MIN Q-ZULAUF	Gibt die Mindestdurchflussmenge im Zulauf auf Basis des Messsignals (in L/Stunde) an.
MAX Q-ZULAUF	Gibt die Höchstdurchflussmenge im Zulauf auf Basis des Messsignals (in L/Stunde) an.
PROPORTION ZULAUF	Gibt die prozentuale Verteilung an Kanal 1 an.
MIN RÜCK SCHLA	Gibt die Mindestdurchflussmenge für die Rücklaufschlammpumpen (in L/Stunde) an.
MAX RÜCK SCHLA	Gibt die Höchstdurchflussmenge für die Rücklaufschlammpumpen (in L/Stunde) an.
Q RÜCK VERHÄLT	Gibt das prozentuale Rücklaufschlammvolumen auf Basis der gemessenen Durchflussmenge an.
Q ZU GLÄTTUNG	Vermindert die Schwankung des Zulaufsignals.

12. Wählen Sie FÄLLMITTEL aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.

Optionen	Beschreibung
METALLGEHALT	Gibt die Metallkonzentration im Fällmittel (in g/l) an. Siehe Fällart auf Seite 28.
REL. ATOMMASSE	Gibt die relative Atommasse des aktiven Fällmittelmaterials (in g/mol) an. Siehe Fällart auf Seite 28.

13. Wählen Sie EINGABEWERT PRÜFEN aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.

Optionen	Beschreibung
HALTEZEIT PO4-P	Gibt die Zeit des letzten korrekten Messwerts einer Eingangsmessung an. Der Messwert wird beibehalten, wenn der Ist-Messwert nicht korrekt ist oder nicht im angegebenen Bereich liegt.
PO4-P_MIN	Legt den PO ₄ -P-Mindestmesswert fest, der vom Controller als korrekt angenommen wird.
PO4-P_MAX	Legt den maximalen PO ₄ -P-Messwert fest, der vom Controller als korrekt angenommen wird.
Q IN MIN	Legt den Q IN-Mindestmesswert fest, der vom Controller als korrekt angenommen wird.

Konfiguration

Optionen	Beschreibung
Q IN MAX	Legt den maximalen Q IN-Messwert fest, der vom Controller als korrekt angenommen wird.
Q RAS MIN	Legt den Q RAS-Mindestmesswert fest, der vom Controller als korrekt angenommen wird.
Q RAS MAX	Legt den maximalen Q RAS-Messwert fest, der vom Controller als korrekt angenommen wird.
Q IRC MIN	Legt den Q IRC-Mindestmesswert fest, der vom Controller als korrekt angenommen wird.
Q IRC MAX	Legt den maximalen Q IRC-Messwert fest, der vom Controller als korrekt angenommen wird.

14. Wählen Sie MODBUS und anschließend eine der Optionen aus.

Optionen	Beschreibung
ADRESSE	Zeigt die Startadresse eines RTC-Moduls innerhalb des MODBUS- Netzwerks an (Standard 41). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
DATENREIHENFOLGE	Gibt die Registerreihenfolge in einem Doppelwort an (Standard NORMAL). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
Wählen Sie DATALOG	INTRVL (PROTOKOLLINTERVALL), um das Intervall

- **15.** Wählen Sie DATALOG INTRVL (PROTOKOLLINTERVALL), um das Intervall festzulegen, in dem Daten in der Protokolldatei gespeichert werden (Angabe in Minuten).
- **16.** SET DEFAULTS (AUF STANDARD SETZEN) stellt die Werkseinstellungen wieder her.

Hinweis: SET DEFAULTS (AUF STANDARD SEZTEN) löscht alle Benutzereinstellungen. Alle vom Benutzer eingestellten Parameter gehen verloren.

5.1.3 Fällart

Geben Sie den effektiven Metallgehalt des Fällmittels in g/l und die relative Atommasse des Metalls in g/mol ein.

- Relative Atommasse von Eisen: 55,8 g/mol
- Relative Atommasse von Aluminium: 26,9 g/mol

Verbundprodukte: Für Produkte, die sowohl Aluminium als auch Eisen enthalten, wird die molare Metallkonzentration aus der Summe der molaren Konzentrationen von Eisen und Aluminium berechnet. Das Produkt der molaren Konzentration (mol/kg) und der Dichte des Produkts (kg/l) ist die molare Metallkonzentration in mol/l. Geben Sie diesen Wert als Metallgehalt ein, und geben Sie REL. ATOMMASSE = 1 ein. Siehe Tabelle 14.

Tabelle 14 Berechnung der molaren Metallkonzentration

Molare Aluminiumkonzentration (8 %):	80 g/kg / 26,9 g/mol = 2,97 mol/kg
Molare Eisenkonzentration (12 %)	120 g/kg / 55,8 g/mol = 2,15 mol/kg
Addieren Sie die molaren Metallkonzentrationen für das Verbundprodukt aus Eisen und Aluminium:	2,97 mol/kg + 2,15 mol/kg = 5,12 mol/kg
Multiplizieren Sie das Ergebnis mit der Produktdichte:	1,43 kg/l x 5,12 mol/kg = 7,32 mol/l

5.2 RTC N/DN-Modul

Das RTC N/DN-Modul ermittelt die Nitrifikations- und Denitrifikationszeiten auf Grundlage der aktuellen Konzentrationen von NH_4 -N (Ammonium-Stickstoff) und NO_3 -N (Nitrat-

Stickstoff). Der Regler verwendet absolute Messwerte sowie die Anstiegs- oder Abfallgeschwindigkeit der Messwerte.

5.2.1 RTC N/DN-Modul-Regelungsprogramme

Die vier Programme in Tabelle 15 berechnen die Zeitintervalle für die Nitrifikation und Denitrifikation und sorgen für eine optimale Anpassung an die lokalen Bedingungen und die verfügbaren Messsignale. Wenn ein Messsignal vorübergehend nicht verfügbar ist, verwendet das Programm automatisch die feste Ersatzstrategie. Wenn beide Messsignale vorübergehend nicht verfügbar sind, verwendet das Programm automatisch den festen Zeitrahmen. Wenn die Messungen wieder verfügbar sind, verwendet das Programm automatisch das ausgewählte Programm. Der Wechsel zwischen Programmen geschieht mit einer Verzögerung von 5 Minuten.

Tabelle 15 RTC N/DN-Modul-Regelungsprogramme

ZEITSTEUERUNG	Fester Zeitrahmen, wenn NH ₄ -N- und NO ₃ -N-Messungen nicht verfügbar oder nicht korrekt sind.
NH4-N	Regelung auf Basis der NH ₄ -N-Konzentration wenn die NO ₃ -N-Messung nicht verfügbar oder nicht korrekt ist.
NO3-N	Regelung auf Basis der NO ₃ -N-Konzentration wenn die NH ₄ -N-Messung nicht verfügbar oder nicht korrekt ist.
NH4-N & NO3-N	Regelung auf Basis der NH ₄ -N- und NO ₃ -N-Konzentration.

5.2.2 RTC N/DN-Modulversionen

Das Modul ist als N/DN-Regelungsversion (mit oder ohne SBR-Option) und als zusätzliche O₂-Stufenregelungsversion (mit und ohne FU-Option) verfügbar. Jede Version ist als 1-Kanal- oder 2-Kanal-Version verfügbar.

Die 2-Kanal-Version kann zwei Belebungsbecken oder SBR-Reaktoren gleichzeitig regeln. Alle Hauptparameter werden zweimal angezeigt und als Kanal 1 und Kanal 2 gekennzeichnet.

Für die Regelung von SBR-Anlagen wird der Regler über ein binäres Eingangssignal über Sedimentation und Abzug informiert. Dies stoppt die Regelung. In einer abschließenden Messung deaktiviert der Regler die Belüftung. Eine Änderung des binären Eingangssignals an das RTC-Modul stoppt den Abzugsprozess. Das RTC-Modul leitet eine Nitrifikations- oder Denitrifikationsphase mir wählbarer Dauer gemäß der Vorauswahl ein.

5.2.3 Konfigurieren der N/DN-Regelungsversion

- 1. Rufen Sie SENSORAUSWAHL auf, und wählen Sie den für die Regelung erforderlichen Sensor aus. Siehe Hinzufügen eines Sensors auf Seite 19.
- 2. Wählen Sie N/DN-REGELUNG aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.
- Wählen Sie ZIELWERTE aus, um die Zielwerte f
 ür NH₄-N und NO₃-N anzupassen. Legen Sie bei der 2-Kanal-Version die Parameter f
 ür KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.

Optionen	Beschreibung
NH4-N	Gibt den durchschnittlichen Zielwert für die NH ₄ -N-Konzentration an.
NO3-N	Gibt den durchschnittlichen Zielwert für die NO ₃ -N-Konzentration an.
NH4/NO3 WICHT.	Legt die Auswirkung der Abweichung von NH_4 -N und NO_3 -N von den Zielwerten fest. Ein Verhältnis von mehr als 1 sorgt für eine stärkere Gewichtung der NH_4 -N-Konzentration. Ein Verhältnis von weniger als 1 sorgt für eine stärkere Gewichtung der NO_3 -N-Konzentration.

Konfiguration

4. Wählen Sie ZEITRAHMEN, und geben Sie Werte für die Optionen in Minuten ein. Siehe Einstellen der Zeitrahmen auf Seite 33.

Optionen	Beschreibung
NITRI MIN	Legt eine Mindestbelüftungszeit fest.
NITRI MAX	Legt eine Höchstbelüftungszeit fest.
DENI MIN	Legt eine Mindestzeit ohne Belüftung fest.
DENI MAX	Legt eine Höchstzeit ohne Belüftung fest.
NITRI ERSATZ	Die Nitrifikationszeit in der Rückfallebene.
DENI ERSATZ	Die Denitrifikationszeit in der Rückfallebene.
START N/DN?	Wählt die Phase aus, in der der Aufbereitungsprozess gestartet wird. (Gilt nur für SBR-Option.)
	 N-PHASE = Nitrifikationsphase DN-PHASE = Denitrifikationsphase

ZEIT INITPHASE Legt die Dauer für die erste Aufbereitungsphase (in % auf Basis der MAX-Zeit) fest. (Gilt nur für SBR-Option.)

5. Wählen Sie REGELPARAMETER und anschließend eine der Optionen aus.

Optionen	Beschreibung
P FAKT NH4+NO3	Legt den Reglerfaktor für die Ammonium- und Nitratkonzentration fest, wenn beide Messungen zur Verfügung stehen. Wirkt sich auf die Länge des gesamten Zyklus (Nitrifikation und Denitrifikation) (in 1/mg/L) auf. Siehe Einstellen der Verstärkungsfaktoren auf Seite 33.
VORHALTZEIT NH4	Vorhaltzeit für Ammonium: Der Regler reagiert auf den nach der konfigurierten Vorhaltezeit erwarteten Ammoniumwert. Verwenden Sie VORHALTZEIT NH4 bei hohen NH ₄ -N-Spitzen im Einlauf.
VORHALTZEIT NO3	Vorhaltzeit für Nitrat: Der Regler reagiert auf den nach der konfigurierten Vorhaltezeit erwarteten Nitratwert. Verwenden Sie VORHALTZEIT NO3 nur, wenn sich größere Mengen NO ₃ im Zulauf befinden.
P FAKT NH4	Setzt den Reglerfaktor auf den Ammoniumgehalt. Wirkt sich auf die Länge der Belüftungsphase (in 1/mg/L) aus (gilt nur, wenn eine Ammoniummessung verfügbar ist). Siehe Einstellen der Verstärkungsfaktoren auf Seite 33.
P FAKT NO3	Setzt den Reglerfaktor auf den Nitratgehalt. Wirkt sich auf die Länge der Phase ohne Belüftung (in 1/mg/L) aus (gilt nur, wenn eine Nitratmessung verfügbar ist). Siehe Einstellen der Verstärkungsfaktoren auf Seite 33.
NH4-N MIN MIN	Stoppt die Nitrifikation, wenn die NH ₄ -N-Konzentration unter den gewählten Wert (in mg/L) fällt, um Energie zu sparen.
NH4-N MAX MAX	Legt den Grenzwert der NH ₄ -N-Konzentration zum Stoppen der Denitrifikation und/oder Verlängern der Nitrifikationszeit fest (in mg/L).
C/N/P-MAX MAX	Gibt den ausgewählten Parameterschwellenwert zum Stoppen der Denitrifikation/verlängerten Nitrifikation (in mg/l) an. Siehe Kriterien für das Stoppen der Denitrifikation/verlängerten Nitrifikation auf Seite 34.
CNP SETZT NITRIMAX AUS	Verlängert den Nitrifikationszeitraum, wenn der Parameter über dem Grenzwert liegt (NEIN/JA).

Optionen	Beschreibung	
SOLLWERT O2 MIN	Legt den belastungsabhängigen O2-Mindestsollwert während der Nitrifikation fest (in mg/L). Siehe Belastungsabängiger O2-Sollwert während der Nitrifikation auf Seite 34.	
SOLLWERT O2 MAX	X Legt den belastungsabhängigen maximalen O2-Sollwert während der Nitrifikation fest (in mg/L). Siehe Belastungsabängiger O2-Sollwert während der Nitrifikation auf Seite 34.	
Wählen Sie EINGABEWERT PRÜFEN aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.		
Optionen	Beschreibung	
HALTEZEIT NH4-N	Gibt die Zeit des letzten korrekten Messwerts einer NH ₄ -N-Messung an. Der Messwert wird beibehalten, wenn der Ist-Messwert der NH ₄ -N- Messung nicht korrekt ist oder nicht im angegebenen Bereich liegt.	
NH4-N MIN	Gibt den NHN-Mindestmesswert an der vom Controller als korrekt	

	angenommen wird.
NH4-N_MAX	Gibt den maximalen $\rm NH_4\text{-}N\text{-}Messwert}$ an, der vom Controller als korrekt angenommen wird.
HALTEZEIT NO3-N	Gibt die Zeit des letzten korrekten Messwerts einer NO ₃ -N-Messung an. Der Messwert wird beibehalten, wenn der Ist-Messwert der NO ₃ -N-Messung nicht korrekt ist oder nicht im angegebenen Bereich liegt.
NO3-N_MIN	Gibt den NO ₃ -N-Mindestmesswert an, der vom Controller als korrekt angenommen wird.

- **NO3-N_MAX** Gibt den maximalen NO₃-N-Messwert an, der vom Controller als korrekt angenommen wird.
- 7. Wählen Sie MODBUS und anschließend eine der Optionen aus.

6.

Optionen	Beschreibung
ADRESSE	Zeigt die Startadresse eines RTC-Moduls innerhalb des MODBUS- Netzwerks an (Standard 41). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
DATENREIHENFOLGE	Gibt die Registerreihenfolge in einem Doppelwort an (Standard NORMAL). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.

- 8. Wählen Sie DATALOG INTRVL (PROTOKOLLINTERVALL), um das Intervall festzulegen, in dem Daten in der Protokolldatei gespeichert werden (Angabe in Minuten).
- **9.** SET DEFAULTS (AUF STANDARD SETZEN) stellt die Werkseinstellungen wieder her.

Hinweis: SET DEFAULTS (AUF STANDARD SEZTEN) löscht alle Benutzereinstellungen. Alle vom Benutzer eingestellten Parameter gehen verloren.

5.2.4 Konfigurieren der Stufenregelungsversion für Sauerstoff

Die optionale Sauerstoffregelung stellt die Belüftungsleistung auf die erforderliche Sauerstoffkonzentration ein. Die Sauerstoffregelung verfügt über bis zu sechs Belüftungsstufen pro Kanal. Die ersten beiden Belüftungsstufen sind optional als Analogausgänge verfügbar, um Frequenzumrichterantriebe zu steuern.

1. Wählen Sie O2-REGELUNG und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Optionen	Beschreibung
P FAKT O2	Definiert den proportionalen FAKTOR für die O2-Steuerung (in 1/mg/L). (Gilt nur für FU-Option.)
VORHALTZEIT	Gibt die Vorhaltzeit für den O2-Regler (in Minuten) an.
DÄMPFUNG	Wirkt sich auf die Wechselfrequenz zwischen den Belüftungsstufen aus. Setzen Sie die Dämpfung für eine geringere Schalthäufigkeit zwischen den Belüftungsstufen auf mehr als 10 Minuten.
STUFENSPERRZEIT VOR	Definiert die Mindestlaufzeit für einen Belüfter in einer Belüftungsstufe, bevor ein Wechsel in gleicher Richtung möglich ist (Angabe in Minuten).
STUFENSPERRZEIT ZURÜCK	Definiert die Mindestlaufzeit für einen Belüfter in einer Belüftungsstufe, bevor ein Wechsel in entgegengesetzter Richtung möglich ist (Angabe in Minuten).
START STUFE MIN	Gibt die Mindestbelüftungsstufe und Intensität zu Beginn der Nitrifikation an.
START STUFE DAUER	Gibt die Höchstdauer der festgelegten Startbelüftungsstufe (in Minuten) an. Während dieser Zeit ist der Sauerstoffregler nicht in Betrieb.
START STUFE ENDE	Wenn die O2-Konzentration den Prozentwert des O2-Sollwerts erreicht hat, wird die feste Startbelüftungsstufe beendet, und der Sauerstoffregler wird aktiviert.
START STUFE MEMORY	Der Regler speichert die Gebläsestufe nach Ablauf der Gesamtzeit (START STUFE DAUER + START STUFE MEMORY). Der Sauerstoffregler verwendet diese Belüftungsstufe als Startwert für die nächste Nitrifikationsphase, sofern höher als START STUFE MIN.
ERSATZ BELÜFT.	Legt die Belüftungsstufe und Intensität fest, wenn die O2- Messung vorübergehend nicht verfügbar ist.

2. Wählen Sie MISCHEN und anschließend eine der Optionen aus.

Optionen	Beschreibung
MISCHEN PAUSE	Legt den Zeitraum (in Minuten) ohne Mischen fest.
MISCHEN DAUER	Legt die Mischdauer (in Sekunden) fest. <i>Hinweis:</i> Zum Mischen wird Belüftungsstufe 1 verwendet.
MISCHEN INTENSITÄT	Legt die Mischintensität (10 bis 100 %) in Belüftungsstufe 1 fest. (Gilt nur für FU-Option.)

3. Wählen Sie BELÜFTUNGSAGGREGAT und anschließend eine der Optionen aus.

Optionen	Beschreibung
FU I MIN 1	Legt die Grenze für den Analogausgang 1 auf den Wert der Mindestfrequenz für das Belüftungsaggregat (in %) fest. (Gilt nur für FU-Option und für FU-Konfiguration 0/4 mA = 0 Hz.)

Optionen	Beschreibung
FU I MIN 2	Legt die Grenze für einen zweiten Analogausgang (in %) fest.
MAX. STUFENZAHL	Anzahl der verfügbaren Gebläse/Stufen.
IN NITRI IMMER AN	Wählen Sie NEIN, um die Gebläsestufe 0 (AUS) einzustellen, wenn während der Nitrifikation hohe O2-Werte auftreten. Verwenden Sie diesen Parameter, um unerwünschten Energieverbrauch durch Gebläse zu vermeiden.
P MIN AGGREGAT 1	Legt eine Belüftungsintensität in Prozent bei Mindestfrequenz für das Aggregat 1 fest. (Gilt nur für FU-Option.)
P MIN AGGREGAT 2	Legt eine Belüftungsintensität in Prozent bei Mindestfrequenz für das Aggregat 2 fest. (Gilt nur für FU-Option.)
P MAX AGGR2/AGGR1	Legt das Verhältnis der maximalen Belüftungsintensitäten zwischen den beiden FU-Aggregaten fest. Wenn die Belüftungsaggregate über gleiche Kapazität verfügen, ist der Wert 1.

4. Wählen Sie MODBUS und anschließend eine der Optionen aus.

Optionen	Beschreibung
ADRESSE	Zeigt die Startadresse eines RTC-Moduls innerhalb des MODBUS- Netzwerks an (Standard 41). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
DATENREIHENFOLGE	Gibt die Registerreihenfolge in einem Doppelwort an (Standard NORMAL). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.

- Wählen Sie DATALOG INTRVL (PROTOKOLLINTERVALL), um das Intervall festzulegen, in dem Daten in der Protokolldatei gespeichert werden (Angabe in Minuten).
- 6. SET DEFAULTS (AUF STANDARD SETZEN) stellt die Werkseinstellungen wieder her.

Hinweis: SET DEFAULTS (AUF STANDARD SEZTEN) löscht alle Benutzereinstellungen. Alle vom Benutzer eingestellten Parameter gehen verloren.

5.2.5 Einstellen der Zeitrahmen

Die Summe der Höchstzeiten für die Nitrifikation und Denitrifikation muss ca. 1,25 Mal der erwarteten Zykluszeit entsprechen.

Legen Sie für NITRI ERSATZ und DENI ERSATZ geeignete Zeiten für die Nitrifikations-/Denitrifikationsphase fest, wenn die NH₄-N- und NO₃-N-Messungen nicht verfügbar sind.

(Standard NITRI MAX = 90 Min., NITRI MIN = 30 Min., DENI MAX = 90 Min., DENI MIN = 30 Min., NITRI ERSATZ = 60 Min., DENI ERSATZ = 60 Min.)

5.2.6 Einstellen der Verstärkungsfaktoren

In allen Versionen des RTC N/DN-Moduls bestimmen die Verstärkungsfaktoren P FAKT NH4+NO3, P FAKT NH4 und P FAKT NO3 die Zykluszeit. Setzen Sie die Faktoren zunächst auf denselben Wert. Wenn der Regler zu oft die Höchstzeiten erreicht, sind die P-Faktoren zu klein. Wenn der Regler zu oft die Mindestzeiten erreicht oder die Zykluszeiten zu kurz sind, sind die P-Faktoren zu hoch.

Passen Sie den P FAKTOR in Schritten von ±0,1 an. Wenn keine erfolgreiche Einstellung gefunden wird, passen Sie den Zeitrahmen an. Für gewöhnlich werden alle Verstärkungsfaktoren P FAKTOR auf denselben Wert gesetzt.

- Verwenden Sie P FAKT NH4+NO3, wenn beide Messungen (NH₄-N und NO₃-N) verfügbar sind.
- Verwenden Sie P FAKT NH4, wenn nur die NH₄-N-Messung verfügbar ist.

Verwenden Sie P FAKT NO3, wenn nur die NO₃-N-Messung verfügbar ist.

5.2.7 Kriterien für das Stoppen der Denitrifikation/verlängerten Nitrifikation

Wenn ein Parameter einen einstellbaren Schwellenwert (C/N/P-MAX MAX) erhöht, wird die Denitrifikationsphase beendet und die Nitrifikationsphase gestartet, unabhängig von der NH₄-N- oder NO₃-N-Konzentration oder vom Zeitrahmen. Verwenden Sie diese Funktion, wenn eine erhöhte biologische P-Elimination während der Denitrifikationsphase zu einer inakzeptabel hohen PO₄-P-Konzentration führt (Standard CNP SETZT NITRIMAX AUS = NEIN).

Verwenden Sie dieselben Eingangsparameter für die NH₄-N-Konzentration, um die Nitrifikationsphase zu verlängern, wenn die Konzentration über dem Schwellenwert liegt und diese Funktion ausgewählt ist. (CNP SETZT NITRIMAX AUS = JA)

5.2.8 Belastungsabängiger O2-Sollwert während der Nitrifikation

Auf Grundlage der zu Beginn der Nitrifikation gemessenen Konzentration von NH₄-N und NO₃-N wird während der Nitrifikation automatisch ein O2-Sollwert berechnet. Der SOLLWERT O2 MIN gibt den O2-Mindestsollwert für die Nitrifikation, SOLLWERT O2 MAX den O2-Höchstsollwert für die Nitrifikation an.

5.3 RTC SD-Modul und RTC ST-Modul

5.3.1 Konfigurieren des RTC SD-Moduls und RTC ST-Moduls

Das RTC SD-Modul ist ein System für die Schlammentwässerung, das RTC ST-Modul ist ein System für die Schlammeindickung. Jedes Modul besteht aus kombinierten Steuerungs- und Regelungsmodulen, die als 1-Kanal- oder 2-Kanal-Version verfügbar sind.

- Rufen Sie SENSORAUSWAHL auf, und wählen Sie den f
 ür die Steuerung/Regelung installieren Sensor aus. Siehe Hinzuf
 ügen eines Sensors auf Seite 19.
- 2. Wählen Sie PROG.VORWAHL aus, um die installierte Version anzuzeigen. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Optionen	Beschreibung
STEUERUNG POLYMERDOSIS	Berechnet die Polymerdosiermenge (in I/Stunde) auf Basis der Beschickungsmenge und der gemessenen TS-Konzentration am Zulauf. (Aktivierung/Deaktivierung) <i>Hinweis:</i> Dieser Steuerungsmodus kann nur gestartet werden, wenn STEUERUNG BESCHICKUNG gestoppt wurde. Die Polymerflussmenge wird vom RTC-Modul gesteuert.
STEUERUNG BESCHICKUNG	Berechnet die Beschickungsmenge (in l/s) auf Basis der gemessenen TS-Konzentration und einer festgelegten Polymerdosiermenge. (Aktivierung/Deaktivierung) <i>Hinweis:</i> Dieser Steuerungsmodus kann nur gestartet werden, wenn STEUERUNG POLYMERDOSIS gestoppt wurde. Die Beschickungsmenge wird vom RTC-Modul gesteuert.

	Optionen	Beschreibung	
	REGELUNG TS ABLAUF	Legt die spezifische Polymerdosiermenge SPEZ POLYMERDOSIS auf Basis der Differenz zwischen der TS-Soll- und Istkonzentration im eingedickten Schlamm fest.	
		Gibt die mit der Schlammeindickung beschickte TS-Fracht auf Basis der Differenz zwischen der TS-Soll- und Istkonzentration im Ablauf an, wenn STEUERUNG BESCHICKUNG ausgewählt ist.	
		Eine Veränderung der spezifischen Dosiermenge wirkt sich auf die Dosiermenge im Modul STEUERUNG POLYMERDOSIS und auf die Beschickungsmenge im Modul STEUEURUNG BESCHICKUNG aus. (Aktivierung/Deaktivierung)	
		<i>Hinweis:</i> Der Regelungsmodus kann nur aktiviert werden, wenn STEUERUNG POLYMERDOSIS oder STEUERUNG BESCHICKUNG deaktiviert werden. Aktivieren/deaktivieren Sie die Einstellung REGELUNG TS ABLAUF auf der CF-Karte.	
	REGELUNG TS FILTRAT	Legt die spezifische Polymerdosiermenge SPEZ POLYMERDOSIS auf Basis der Differenz zwischen der TS-Soll- und Istkonzentration im Filtrat/Zentrat fest.	
		Gibt die mit der Schlammeindickung beschickte TS-Fracht auf Basis der Differenz zwischen der TS-Soll- und Istkonzentration im Ablauf an, wenn STEUERUNG BESCHICKUNG ausgewählt ist.	
		Eine Veränderung der spezifischen Dosiermenge wirkt sich auf die Dosiermenge im Modul STEUERUNG POLYMERDOSIS und auf die Beschickungsmenge im Modul STEUEURUNG BESCHICKUNG aus. (Aktivierung/Deaktivierung)	
		<i>Hinweis:</i> Der Regelungsmodus kann nur aktiviert werden, wenn STEUERUNG POLYMERDOSIS oder STEUERUNG BESCHICKUNG deaktiviert werden. Aktivieren/deaktivieren Sie die Einstellung REGELUNG TS FILTRAT auf der CF-Karte.	

3. Wählen Sie REGELPARAMETER und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Optionen	Beschreibung
SPEZ POLYMERDOSIS	Gibt die erforderliche spezifische Polymerdosis (in g Polymer/kg TS), die der Maschine zugeführt wird, auf Basis der TS-Menge an.
POLYMERKONZENTRATION	Gibt die mit der Polymerpumpe zugeführte Polymerkonzentration (in g/l) an.
MANUELLE POLYMERDOSIS	Zeigt die Polymermenge (in I/Stunde) an, wenn
	 STEUERUNG BESCHICKUNG aktiviert ist. die TS-Messung im Zulauf einen Fehler meldet. die Durchflussmessung im Zulauf einen Fehler meldet.
MANUELLE BESCHICKUNG	Zeigt die Beschickungsmenge (in l/s) an, wenn
	 STEUERUNG POLYMERDOSIS aktiviert ist. die TS-Messung im Zulauf einen Fehler meldet. die Durchflussmessung im Zulauf einen Fehler meldet.
MAX ABSCHLAG	Gibt den Höchstbetrag an, um den die spezifische Polymerdosis SPEZ POLYMERDOSIS (in g/kg) verringert werden kann, wenn REGELUNG TS ABLAUF ausgewählt wurde.

Konfiguration

Optionen	Beschreibung
MAX AUFSCHLAG	Gibt den Höchstbetrag an, um den die spezifische Polymerdosis SPEZ POLYMERDOSIS (in g/kg) erhöht werden kann, wenn REGELUNG TS ABLAUF ausgewählt wurde.
SOLLWERT TS	Gibt den erforderlichen Sollwert der TS-Konzentration im eingedickten Schlamm (in g/L) an. <i>Hinweis: Gilt nur, wenn REGELUNG TS ABLAUF aktiviert</i> <i>ist.</i>
P FAKTOR TS	Gibt die proportionale Verstärkung des PID-Reglers für die TS-Konzentration im eingedickten Schlamm (in l/g) an. <i>Hinweis:</i> Teilen Sie P FAKTOR TS durch 100 und multiplizieren Sie ihn anschließend mit der Differenz der TS- Istkonzentration zum erforderlichen TS-Sollwert.
NACHSTELLZEIT TS	Gibt die Nachstellzeit des PID-Reglers für die TS- Konzentration im eingedickten Schlamm (in Minuten) an. <i>Hinweis:</i> Setzen Sie NACHSTELLZEIT TS auf 0, um diesen Anteil der PI-Steuerung zu deaktivieren.
VORHALTZEIT TS	Gibt die Vorhaltzeit des PID-Reglers für die TS- Konzentration im eingedickten Schlamm (in Minuten) an.
SOLLWERT FILTRAT	Gibt den erforderlichen Sollwert der TS-Konzentration im Zentrat/Filtrat (in g/L) an. <i>Hinweis: Gilt nur, wenn REGELUNG TS FILTRAT aktiviert ist.</i>
P FAKTOR FILTRAT	Gibt die proportionale Verstärkung des PID-Reglers für die TS-Konzentration im Zentrat/Filtrat (in I/g) an. <i>Hinweis: Teilen Sie P FAKTOR FILTRAT durch 100 und</i> <i>multiplizieren Sie ihn anschließend mit der Differenz der TS-</i> <i>Istkonzentration zum erforderlichen TS-Sollwert.</i>
NACHSTELLZEIT FILTRAT	Gibt die Nachstellzeit des PID-Reglers für die TS- Konzentration im Zentrat/Filtrat (in Minuten) an. <i>Hinweis:</i> Setzen Sie NACHSTELLZEIT FILTRAT auf 0, um diesen Anteil der PI-Steuerung zu deaktivieren.
VORHALTZEIT FILTRAT	Gibt die Vorhaltzeit des PID-Reglers für die TS- Konzentration im Zentrat/Filtrat (in Minuten) an.

4. Wählen Sie EIN- / AUSGANGSGRENZEN und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Optionen	Beschreibung
MIN BESCHICK. STOP DOS	Stoppt die Polymerdosierung, wenn die Beschickungsmenge der Maschine unter der ausgewählten prozentualen MIN BESCHICK. STOP DOS multipliziert mit UNTERGRENZE BESCHICK. liegt. Verwenden Sie diesen Parameter, um zu verhindern, dass die Eindickungs-/Entwässerungsmaschinen bei sehr geringem Beschickungsfluss verstopfen.
UNTERGRENZE BESCHICK.	Setzt Eingangssignale der Beschickungsmenge unter diesem Wert auf diesen Wert (in l/s) (zur Vermeidung von Messwertausschlägen nach unten).
OBERGRENZE BESCHICK.	Setzt Eingangssignale der Beschickungsmenge über diesem Wert auf diesen Wert (in l/s) (zur Vermeidung von Messwertausschlägen nach oben).
GLÄTTUNG BESCHICKUNG	Vermindert Schwankungen der Beschickungsmengen- Messwerte (Angabe in Minuten).

Optionen	Beschreibung
UNTERGRENZE TS ZULAUF	Setzt TS-Messwerte vom Zulauf unter diesem Wert auf diesen Wert (in g/l) (zur Vermeidung von Messwertausschlägen nach unten).
OBERGRENZE TS ZULAUF	Setzt TS-Messwerte vom Zulauf über diesem Wert auf diesen Wert (in g/l) (zur Vermeidung von Messwertausschlägen nach oben).
TS GLÄTTUNG ZULAUF	Vermindert Schwankungen der TS-Messwerte vom Zulauf (Angabe in Minuten).
UNTERGRENZE TS ABLAUF	Setzt TS-Messwerte des eingedickten Schlamms unter diesem Wert auf diesen Wert (in g/l) (zur Vermeidung von Messwertausschlägen nach unten).
OBERGRENZE TS ABLAUF	Setzt TS-Messwerte des eingedickten Schlamms über diesem Wert auf diesen Wert (in g/l) (zur Vermeidung von Messwertausschlägen nach oben).
TS GLÄTTUNG ABLAUF	Vermindert Schwankungen der TS-Messwerte vom Ablauf (Angabe in Minuten).
MIN POLYMERDOSIERUNG	Setzt RTC-Berechnungen unter diesem Wert auf diesen Wert und überträgt sie an die Polymerpumpe (Angabe in l/s). Hinweis: Wenn STEUERUNG BESCHICKUNG aktiviert ist, werden Messwerte der Polymerdosis unter diesem Wert auf diesen Wert gesetzt (zur Vermeidung von Ausschlägen im Dosisfluss nach unten).
MAX POLYMERDOSIERUNG	Setzt RTC-Berechnungen über diesem Wert auf diesen Wert und überträgt sie an die Polymerpumpe (Angabe in I/s). Hinweis: Wenn STEUERUNG BESCHICKUNG aktiviert ist, werden Messwerte der Polymerdosis über diesem Wert auf diesen Wert gesetzt (zur Vermeidung von Ausschlägen im Dosisfluss nach oben).

5. Wählen Sie EINGÄNGE und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Hinweis: Stellen Sie sicher, dass alle EINGANGS-/AUSGANGSSIGNALE für die standardisierten kombinierten RTC-Module an den sc1000 E/A-Modulen konfiguriert sind. Die Menüs EINGANG/AUSGANG werden mit den standardisierten kombinierten RTC-Modulen nicht angezeigt.

	Optionen	Beschreibung
	MIN BESCHICKUNGSMENGE	Gibt die Mindestdurchflussmenge vom Zulauf auf Basis des Messsignals (in l/s) an.
	MAX BESCHICKUNGSMENGE	Gibt die Höchstdurchflussmenge vom Zulauf auf Basis des Messsignals (in l/s) an.
	GLÄTTUNG BESCHICKUNG	Gibt eine Glättungszeit für das Beschickungssignal an.
	MIN BESCHICK. STOP DOS	Gibt die Mindestbeschickung zum Stoppen der Polymerdosis an.
	TS GLÄTTUNG ZULAUF	Gibt eine Glättungszeit für TS im Zulauf an.
	TS GLÄTTUNG ABLAUF	Gibt eine Glättungszeit für TS im Ablauf an.
	MIN POLYMERFLUSS	Legt die Mindestpolymerdosis (in I/Stunde) auf Basis des 0/4-mA-Messsignals fest.
	MAX POLYMERFLUSS	Legt die Höchstpolymerdosis (in I/Stunde) auf Basis des 20- mA-Messsignals fest.

6. Wählen Sie AUSGÄNGE und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Hinweis: Stellen Sie sicher, dass alle EINGANGS-/AUSGANGSSIGNALE für die standardisierten kombinierten RTC-Module an den sc1000 E/A-Modulen konfiguriert sind. Die Menüs EINGANG/AUSGANG werden mit den standardisierten kombinierten RTC-Modulen nicht angezeigt.

Optionen	Beschreibung
MIN BESCHICKUNGSMENGE	Gibt die Mindestdurchflussmenge vom Zulauf auf Basis des Messsignals (in I/s) an.
MAX BESCHICKUNGSMENGE	Gibt die Höchstdurchflussmenge vom Zulauf auf Basis des Messsignals (in l/s) an.
MIN POLYMERFLUSS	Legt die Mindestpolymerdosis (in l/Stunde) auf Basis des 0/4- mA-Messsignals fest.
MAX POLYMERFLUSS	Legt die Höchstpolymerdosis (in I/Stunde) auf Basis des 20- mA-Messsignals fest.
STELLZYKLUS	Umfasst die EIN- und AUS-Zeit der Pumpe (in Sekunden). Die Stellzykluszeit wirkt sich auf die EIN/AUS-Dauer im Impuls/Pause-Modus aus. Beispiel: Bei einer Stellzykluszeit von 100 Sekunden und einem Dosissteuerungswert von 60 % wird das Aktivierungsintervall der Dosierpumpe auf 60 Sekunden und das Deaktivierungsintervall auf 40 Sekunden gesetzt. Kurze Zykluszeiten erhöhen die Wechselfrequenz.
MIN LAUFZEIT	Gibt die Mindest-EIN-Zeit der Pumpe (in Sekunden) an. Stellen Sie die MIN LAUFZEIT ein, um Beschädigungen der Dosierpumpe zu vermeiden. Die Pumpe läuft mindestens für die Dauer der hier eingestellten Zeitspanne. Der Wert muss ein Bruchteil der Stellzykluszeit sein.

7. Wählen Sie EINGANGSWERT PRÜFEN aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.

Optionen	Beschreibung
HALTEZEIT TS ZULAUF	Gibt die Zeit des letzten korrekten Messwerts einer TS- Messung an. Der Messwert wird beibehalten, wenn der Ist- Messwert der TS-Messung nicht korrekt ist oder nicht im angegebenen Bereich liegt.
UNTERGRENZE TS ZULAUF	Gibt den TS-Mindestmesswert an, der vom Controller als korrekt angenommen wird.
OBERGRENZE TS ZULAUF	Gibt den TS-Höchstmesswert an, der vom Controller als korrekt angenommen wird.
HALTEZEIT TS ABLAUF	Gibt die Zeit des letzten korrekten Messwerts einer TS- Messung an. Der Messwert wird beibehalten, wenn der Ist- Messwert der TS-Messung nicht korrekt ist oder nicht im angegebenen Bereich liegt.
UNTERGRENZE TS ABLAUF	Gibt den TS-Mindestmesswert an, der vom Controller als korrekt angenommen wird.
OBERGRENZE TS ABLAUF	Gibt den TS-Höchstmesswert an, der vom Controller als korrekt angenommen wird.
HALTEZEIT BESCHICKUNG	Gibt die Zeit des letzten korrekten Messwerts der Beschickung an. Der Messwert wird beibehalten, wenn der Ist-Messwert der Beschickungsmessung nicht korrekt ist oder nicht im angegebenen Bereich liegt.

Optionen	Beschreibung
MIN BESCHICKUNGSMENGE	Gibt den Mindestmesswert einer Beschickung an, der vom Controller als korrekt angenommen wird.
MAX BESCHICKUNGSMENGE	Gibt den Höchstmesswert einer Beschickung an, der vom Controller als korrekt angenommen wird.

8. Wählen Sie MODBUS und anschließend eine der Optionen aus.

Optionen	Beschreibung
ADRESSE	Zeigt die Startadresse eines RTC-Moduls innerhalb des MODBUS- Netzwerks an (Standard 41). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
DATENREIHENFOLGE	Gibt die Registerreihenfolge in einem Doppelwort an (Standard NORMAL). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
Wählen Sie DATALOG festzulegen, in dem Da	INTRVL (PROTOKOLLINTERVALL), um das Intervall ten in der Protokolldatei gespeichert werden (Angabe in

Minuten).**10.** SET DEFAULTS (AUF STANDARD SETZEN) stellt die Werkseinstellungen wieder her.

Hinweis: SET DEFAULTS (AUF STANDARD SEZTEN) löscht alle Benutzereinstellungen. Alle vom Benutzer eingestellten Parameter gehen verloren.

5.4 RTC N-Modul

5.4.1 Allgemeine Informationen

9.

Das RTC N-Modul zur Steuerung/Regelung für die Nitrifikation optimiert die Nitrifikationsprozesse in dauerhaft belüfteten Abwasseraufbereitungsanlagen (z. B. in längsdurchströmten Nitrifikationsbecken mit einer vorgeschalteten Denitrifikation). Das RTC N-Modul verfügt über eine Steuer- und eine Regeleinheit. Die Steuereinheit basiert auf NH₄-N-Zulaufkonzentration, Zulaufmenge und Temperatur im Belebungsbecken. Optional wird auch die Gesamtkonzentration von Feststoffen im Belebungsbecken berücksichtigt. Aufgrund dieser Informationen wird ein O2-Sollwert für gelösten Sauerstoff berechnet, der für das Erreichen des gewünschten NH₄-N-Sollwerts am Ablauf des Belüftungstanks erforderlich ist. Serienmäßig zu der Steuereinheit ist eine Reglereinheit integriert, die die NH₄-N-Konzentration am Ende der Nitrifikationszone einbindet. Die PID-Ausgangssignale werden mit denen der Steuerung kombiniert, um den erforderlichen Sollwert für gelösten Sauerstoff zu berechnen.

5.4.2 RTC N-Modul-Regelungsprogramme

Für eine stabile Nitrifikation ermitteln die vier Programme in Tabelle 16 einen O2-Sollwert für das Nitrifikationsbecken. Wenn ein Messsignal vorübergehend nichtverfügbar ist, verwendet das Programm automatisch die jeweils noch verfügbare Messung (NH₄-N Zulauf, NH₄-N Ablauf oder TS). Wenn die Messungen wieder verfügbar sind, verwendet das Programm automatisch das ausgewählte Programm. Der Wechsel zwischen Programmen geschieht mit einer Verzögerung von 5 Minuten.

NH ₄ -N Zulauf Nitrifikation	Ermittelt den O2-Sollwert auf Grundlage der NH ₄ -N-Fracht für die Nitrifikation.
NH_4 -N Zulauf und TS	Berechnet den O2-Sollwert auf Basis der NH ₄ -N-Fracht und des aktuellen Schlammalters.

Tabelle 16 RTC N-Modul-Regelungsprogramme

Tabelle 16 RTC N-Modul-Regelungsprogramme (fortgesetzt)	
NH ₄ -N Zulauf und NH ₄ -N Ablauf	Berechnet den O2-Sollwert auf Basis der NH ₄ -N-Fracht für die Nitrifikation und der NH ₄ -N-Konzentration im Ablauf.
NH ₄ -N Zulauf, NH ₄ -N Ablauf und TS	Berechnet den O2-Sollwert auf Basis der NH_4 -N-Fracht für die Nitrifikation und der NH_4 -N-Konzentration im Ablauf unter Berücksichtigung des aktuellen Schlammalters.

AC DTC N Medul Develupments growing (fortuge et al)

5.4.3 RTC N-Modulversionen

Das Modul ist als N-Regelungsversion und als optionale O2-Stufenregelungsversion (mit und ohne FU-Option) verfügbar. Jede Version ist als 1-Kanal- oder 2-Kanal-Version verfügbar.

Die 2-Kanal-Version kann zwei Belebungsbecken regeln. Alle Hauptparameter werden zweimal angezeigt und als Kanal 1 und Kanal 2 gekennzeichnet.

5.4.4 Konfigurieren der N-Regelungsversion

- 1. Rufen Sie SENSORAUSWAHL auf, und wählen Sie den für das RTC-Modul installieren Sensor aus. Siehe Hinzufügen eines Sensors auf Seite 19.
- 2. Wählen Sie N-REGELUNG und anschließend eine der Optionen aus.

Optionen	Beschreibung
SCHLAMMALTER MODUS	Wählen Sie eine von drei Betriebsarten aus:
	 Manuell: Das aerobe Schlammalter (Sludge Retention Time, SRT) wird per manueller Eingabe an den Controller übermittelt. Der TS-Messwert ist im Belebungsbecken nicht erforderlich. TS mL: SRT wird auf Basis der TS-Konzentration in der Belebung und der täglich entfernten TS-Masse berechnet. SRT-RTC: Ein SRT-RTC berechnet das SRT.
SCHLAMMALTER (MANUELL)	Legt das Schlammalter (SRT) im Belebungsbecken als manuelle Eingabe fest. Wenn das TS-Signal vorübergehend nicht verfügbar ist, verwendet der Controller diesen Wert (Angabe in Tagen).
TÄGL. ABZUGSMENGE	Legt die Menge an täglich aus dem Prozess entferntem Schlamm fest (Angabe in kg/d). Basierend auf diesem Wert werden die TS- Konzentration in der Belebung und das belüftete Volumen des SRT berechnet.
TSS BELEBUNG	RTC verwendet diesen Wert, wenn keine TS-Messung verfügbar ist (Angabe in g/L).
CBS-TKN VERHÄLTNIS	Legt das angenommene CBS/TKN-Verhältnis zur Berechnung einer CBS-bezogenen Menge an NH_4 -N fest, die in der Biomasse enthalten ist.
MIN NITRIFIKANT. KONZ.	Berechnet die Konzentration an Nitrifikanten im Belebtschlamm (in %) auf Basis der während des letzten SRT nitrifizierten Menge an NH ₄ -N. Diese Konzentration ist erforderlich, um den O2-Sollwert zu ermitteln. Wenn die berechnete Konzentration unter MIN NITRIFIKANT. KONZ. liegt, verwenden Sie MIN NITRIFIKANT. KONZ., um den O2-Sollwert zu ermitteln.
MAX NITRIFIKANT. KONZ.	Berechnet die Konzentration an Nitrifikanten im Belebtschlamm (in %) auf Basis der während des letzten SRT nitrifizierten Menge an NH_4 -N. Diese Konzentration ist erforderlich, um den O2-Sollwert zu ermitteln. Wenn die berechnete Konzentration über MAX NITRIFIKANT. KONZ. liegt, verwenden Sie MAX NITRIFIKANT. KONZ., um den O2-Sollwert zu ermitteln.

Optionen	Beschreibung
MODELL- KORREKTUR-FAKT.	Korrigiert den durch das Modell berechneten O2-Sollwert.
O2-ERSATZWERT MODELL	Legt den O2-Ersatzwert fest, wenn eine Messung (NH ₄ -N, TS, Durchfluss) vorübergehend nicht verfügbar ist (Angabe in mg/L).

3. Wählen Sie NH4-N SOLLWERT aus.

Optionen	Beschreibung
NH4-N SOLLWERT	Legt den NH ₄ -N-Sollwert für den Ablauf der Belebung fest.

4. Wenn die NH₄-N-Messung im Ablauf für die Regelung verfügbar ist, wählen Sie eine Option aus.

Optionen	Beschreibung
P FAKT NH4	Gibt den proportionalen Faktor für den PID-Regler für die NH ₄ -N- Konzentration in der Ablaufbelüftung (in 1/mg/L) an.
NACHSTELLZEIT NH4	Gibt die Nachstellzeit für den PID-Regler für die NH ₄ -N- Konzentration im Ablauf der Belebung (in Minuten) an. Hinweis: Setzen Sie NACHSTELLZEIT NH4 auf 0, um diesen Anteil des PID-Reglers zu deaktivieren.
VORHALTZEIT NH4	Gibt die Vorhaltzeit für den PID-Regler für die NH ₄ -N-Konzentration im Ablauf der Belebung (in Minuten) an. <i>Hinweis:</i> Setzen Sie VORHALTZEIT NH4 auf 0, um den diesen Anteil des PID-Reglers zu deaktivieren.
Wählen Sie LIMITS (G	RENZEN) und anschließend eine der Optionen aus.
• · · · •	

Optionen	Beschreibung
SOLLWERT O2 MIN	Setzt einen berechneten O2-Sollwert kleiner als SOLLWERT O2 MIN auf diesen Wert (Angabe in mg/l).
SOLLWERT O2 MAX	Setzt einen berechneten O2-Sollwert größer als SOLLWERT O2 MAX auf diesen Wert (Angabe in mg/l).
GLÄTTUNG	Glättet den ermittelten O2-Sollwert.

6. Wählen Sie EINGÄNGE und anschließend eine der Optionen aus. Siehe Seite 0 . Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. *Hinweis:* Stellen Sie sicher, dass alle EINGANGS-/AUSGANGSSIGNALE für die standardisierten kombinierten RTC-Module an den sc1000 E/A-Modulen konfiguriert sind. Die Menüs EINGANG/AUSGANG werden mit den standardisierten kombinierten RTC-Modulen nicht angezeigt.

Optionen	Beschreibung
MIN ZULAUF	Gibt die Mindestdurchflussmenge vom Zulauf auf Basis des Messsignals (in I/s) an.
MAX ZULAUF	Gibt die Höchstdurchflussmenge vom Zulauf auf Basis des Messsignals (in I/s) an.

7.

5.

Hinweis: Stellen Sie sicher, dass alle EINGANGS-/AUSGANGSSIGNALE für die standardisierten kombinierten RTC-Module an den sc1000 E/A-Modulen konfiguriert sind.

Optionen	Beschreibung
MIN REZIRKULATION	Gibt die Mindest-Rezirkulationsdurchflussmenge auf Basis des Messsignals (in l/s) an.
MAX REZIRKULATION	Gibt die Höchst-Rezirkulationsdurchflussmenge vom Zulauf auf Basis des Messsignals (in l/s) an.

Konfiguration

Optionen	Beschreibung
Q REZI VERHÄLT	Berechnet den REZI-Durchfluss auf Basis des Eingangssignals, wenn Q REZI VERHÄLT auf 0 gesetzt ist. Wenn der Wert nicht 0 ist, wird der REZI-Durchfluss mit dem Zulauf berechnet: Q REZI = Q REZI VERHÄLT × ZULAUF innerhalb der Grenzen von MIN REZIRKULATION und MAX REZIRKULATION (in %).
MIN RÜCK SCHLA	Gibt die Mindest-Rücklaufschlamm-Durchflussmenge auf Basis des Messsignals (in I/s) an.
MAX RÜCK SCHLA	Gibt die Höchst-Rücklaufschlamm-Durchflussmenge vom Zulauf auf Basis des Messsignals (in I/s) an.
Q RÜCK VERHÄLT	Berechnet den RS-Durchfluss auf Basis des Eingangssignals, wenn Q RÜCK VERHÄLT auf 0 gesetzt ist. Wenn der Wert nicht 0 ist, wird der RS-Durchfluss mit dem Zulauf berechnet: Q RÜCK = Q RÜCK VERHÄLT × ZULAUF
	SCHLA (in %).
PROPORTION ZULAUF	Legt die Proportion des Gesamtzulaufs zum Controller-Kanal (Straße) fest.

8. Wählen Sie AUSGANG und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Optionen	Beschreibung
MIN O2 VORGABE	Gibt den Mindest-O2-Sollwert auf Basis des 0/4-mA-Signals (in mg/l) an.
MAX O2 VORGABE	Gibt den Höchst-O2-Sollwert auf Basis des 20-mA-Signals (in mg/l) an.

- Wählen Sie VOLUME > VOLUME (VOLUMEN > VOLUMEN), um das abgezogene Volumen in m³ für Kanal 1 und Kanal 2 einzugeben.
 Hinweis: Wenn einer von zwei Kanälen nicht verfügbar ist (Revision oder Zeiten mit niedriger Last), setzen Sie das Volumen für diesen Kanal auf 0 m³. Das RTC-Modul überträgt alle Durchflussmengen an den verfügbaren Kanal.
- 10. Wählen Sie MODBUS und anschließend eine der Optionen aus.

Optionen	Beschreibung
ADRESSE	Zeigt die Startadresse eines RTC-Moduls innerhalb des MODBUS- Netzwerks an (Standard 41). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
DATENREIHENFOLGE	Gibt die Registerreihenfolge in einem Doppelwort an (Standard NORMAL). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
Wählen Sie DATALOG	INTRV/L (PROTOKOLLINITERV/ALL) um das Intervall

- **11.** Wählen Sie DATALOG INTRVL (PROTOKOLLINTERVALL), um das Intervall festzulegen, in dem Daten in der Protokolldatei gespeichert werden (Angabe in Minuten).
- **12.** SET DEFAULTS (AUF STANDARD SETZEN) stellt die Werkseinstellungen wieder her.

Hinweis: SET DEFAULTS (AUF STANDARD SEZTEN) löscht alle Benutzereinstellungen. Alle vom Benutzer eingestellten Parameter gehen verloren.

5.4.5 Konfigurieren der O2-Regelungsversion

Die optionale Sauerstoffregelung stellt die Belüftungsintensität auf die erforderliche Sauerstoffkonzentration ein. Der Sauerstoffregler verfügt über maximal sechs Belüftungsstufen für jeden Kanal. Bei der FU-Option sind die ersten beiden Belüftungsstufen als Analogausgänge verfügbar, um Frequenzumrichterantriebe zu steuern.

1. Wählen Sie O2-REGELUNG und anschließend eine der Optionen aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest.

Optionen	Beschreibung
P FAKT O2	Gibt den Faktor für den Sauerstoffregler in 1/mg/L an. (Gilt nur für FU-Option.)
VORHALTZEIT	Gibt die Vorhaltzeit für den O2-Regler in Minuten an.
DÄMPFUNG	Wirkt sich auf die Wechselfrequenz zwischen den Belüftungsstufen aus. Setzen Sie die Dämpfung für eine geringere Schalthäufigkeit zwischen den Belüftungsstufen auf mehr als 10 Minuten.
STUFENSPERRZEIT VOR	Definiert die Mindestlaufzeit für einen Belüfter in einer Belüftungsstufe, bevor ein Wechsel in gleicher Richtung möglich ist (Angabe in Minuten).
STUFENSPERRZEIT ZURÜCK	Definiert die Mindestlaufzeit für einen Belüfter in einer Belüftungsstufe, bevor ein Wechsel in entgegengesetzter Richtung möglich ist (Angabe in Minuten).
ERSATZ BELÜFT.	Legt die Belüftungsstufe und Intensität fest, wenn die O2- Messung vorübergehend nicht verfügbar ist.

2. Wählen Sie MISCHEN und anschließend eine der Optionen aus.

Optionen	Beschreibung
MISCHEN PAUSE	Legt den Zeitraum (in Minuten) ohne Mischen fest.
MISCHEN DAUER	Legt die Mischdauer (in Sekunden) fest. <i>Hinweis:</i> Zum Mischen wird Belüftungsstufe 1 verwendet.
MISCHEN INTENSITÄT	Legt die Mischintensität (10 bis 100 %) in Belüftungsstufe 1 fest. (Gilt nur für FU-Option.)

3. Wählen Sie BELÜFTUNGSAGGREGAT und anschließend eine der Optionen aus.

Optionen	Beschreibung
FU I MIN 1	Legt die Grenze für den Analogausgang 1 auf den Wert der Mindestfrequenz für das Belüftungsaggregat (in %) fest. (Gilt nur für FU-Option und für FU-Konfiguration 0/4 mA = 0 Hz.)
FU I MIN 2	Legt die Grenze für einen zweiten Analogausgang (in %) fest.
MAX. STUFENZAHL	Anzahl der verfügbaren Gebläse/Stufen.
BELÜFTUNG IMMER AN	Deaktiviert den letzten Belüfter während der Nitrifikation, wenn die O2-Konzentration zu hoch ist (NEIN/JA).
P MIN AGGREGAT 1	Legt eine Belüftungsintensität in Prozent bei Mindestfrequenz für das Aggregat 1 fest. (Gilt nur für FU-Option.)

Optionen	Beschreibung
P MIN AGGREGAT 2	Legt eine Belüftungsintensität in Prozent bei Mindestfrequenz für das Aggregat 2 fest. (Gilt nur für FU-Option.)
P MAX AGGR2/AGGR1	Legt das Verhältnis der maximalen Belüftungsintensitäten zwischen den beiden FU-Aggregaten fest. Wenn die Belüftungsaggregate über gleiche Kapazität verfügen, ist der Wert 1.

4.

5.5 RTC SRT-Modul

Das RTC-Modul berechnet die erforderliche Durchflussmenge des Überschussschlamms (in I/s), um sicherzustellen, dass die Nitrifikation stabil bleibt.

Die Berechnung basiert auf dem Trockensubstanzgehalts im Belebungsbecken und im ÜSS. Um eine stabile Nitrifikation bei einer bestimmten Temperatur zu erhalten, kann das Schlammalter vom RTC-Modul auf folgender Basis berechnet werden:

- SRT = SF × 3,4 × 1,103^(15-T) (SRT: erforderliches aerobes Schlammalter; SF: Sicherheitsfaktor (basiert auf den jeweiligen Anlagenbedingungen, dem Einzugsgebiet); T: Temperatur des Belebtschlamms im Belebungsbecken)
- oder manuelle Berechnung f
 ür jeden Monat. Verwenden Sie TABELLE auf Basis des Verh
 ältnisses zwischen Temperatur und dem erforderlichen Schlammalter. Siehe Konfigurieren des RTC SRT-Moduls auf Seite 44, Schritt 3.

Stellen Sie sicher, dass die Mindest- und Höchstkonzentrationen des Trockensubstanzgehalts im Belebungsbecken richtig eingestellt sind, damit ausreichend Trockensubtanz im Prozess vorhanden ist bzw. damit die sekundäre Aufbereitung nicht überladen wird.

5.5.1 Konfigurieren des RTC SRT-Moduls

- 1. Rufen Sie SENSORAUSWAHL auf, und wählen Sie den für das RTC-Modul installieren Sensor aus. Siehe Hinzufügen eines Sensors auf Seite 19.
- 2. Wählen Sie REGELPARAMETER und anschließend eine der Optionen aus.

Optionen	Beschreibung
SCHLAMMALTER MODUS	Wählt auf Basis des aeroben Schlammalters (Sludge Retention Time, SRT) eine von zwei Betriebsarten aus.
	 MANUAL (MANUELL): Das SRT wird als jährliche Ganglinie bereitgestellt. TEMPERATURE (TEMEPRATUR): Das SRT wird auf Basis der tatsächlich im Prozess gemessenen Temperatur berechnet.
MIN ÜSS ABZUG	Gibt die Mindestkapazität der Überschussschlammpumpe (in l/s) an.
MAX ÜSS ABZUG	Gibt die Höchstkapazität der Überschussschlammpumpe (in l/s) an.
MIN TS BELEBUNGSBECKEN	Gibt die in Belebungsbecken erwünschte Mindest-TS- Konzentration (in g/l) an (z. B. in Zeiträumen mit hoher Temperatur). Es wird eine Warnmeldung angezeigt, wenn dieser Grenzwert aktiviert ist.

Optionen	Beschreibung
MAX TS BELEBUNGSBECKEN	Gibt die in Belebungsbecken erwünschte Höchst-TS- Konzentration (in g/l) an (z. B. in Zeiträumen mit niedriger Temperatur). Es wird eine Warnmeldung angezeigt, wenn dieser Grenzwert aktiviert ist.
P FAKTOR TS	Erhöht das Überschussschlamm-Pumpvolumen, wenn die TS-Istkonzentration im Belebungsbecken nahe MAX TS BELEBUNGSBECKEN liegt. Wenn die TS-Istkonzentration gleich MAX TS BELEBUNGSBECKEN ist, wird der ausgewählte P-Faktor verwendet, um das Überschussschlamm-Pumpvolumen zu beschleunigen (Angabe in I/g).
ERSATZWERT ÜSS ABZUG	Gibt den Schlammabzugswert vor, wenn eine Messung (Qualität oder Durchfluss) vorübergehend nicht verfügbar ist (Angabe in I/s).
ERSATZWERT TS ABLAUF	Gibt den TS-Ablaufwert vor, wenn eine Messung (Qualität oder Durchfluss) vorübergehend nicht verfügbar ist (Angabe in I/s).
GLÄTTUNG	Glättet die Schwankungen des berechneten Sollwerts für den Überschussschlamm-Abzugswert (Angabe in Minuten). Der gemittelte Wert beinhaltet das abgezogene TS-Volumen und die Ablaufmenge. Setzen Sie GLÄTTUNG auf mindestens 30 Minuten.
ZEITRAUM SRT BERECHNEN	Gibt den Zeitraum für die Berechnung des Schlammalters (in Tagen) an. Wählen Sie Vielfache von 7 aus, um wöchentliche Arbeitsmuster aufzuzeigen.
MIN O2 AEROBES SRT	Gibt einen Schwellenwert zur Auswahl von O2- Konzentrationen an. O2-Konzentrationen unter diesem Wert werden nicht als Belüftungszeit berechnet. O2- Konzentrationen über diesem Wert sind Belüftungszeit (Angabe in mg/l).
SICHERHEITSFAKTOR	Berechnet das erforderliche aerobe Schlammalter zur Einhaltung der deutschen Richtlinie DWA A131 Gleichung 5-1. Setzen Sie gemäß der Richtlinie den Faktor bei Anlagen für weniger als 20.000 EW auf 1,8, bei Anlagen für mehr als 100.000 EW auf 1,45. Ein zu hoher oder zu niedriger SRT-SICHERHEITSFAKTOR führt zu suboptimalen Betriebszuständen der Anlage.
MINDESTSCHLAMMALTER	Legt das jederzeit beizubehaltende Mindestschlammalter (in Tagen) fest.
KORR FAKTOR	Legt einen Prozentsatz von mehr als 0 % fest, um den Sollwert für das Schlammalter schneller zu ermitteln. Die Verwendung dieses Parameters ist nicht notwendig. Einstellungen von mehr als 10 % sind mit Vorsicht zu verwenden.

- 3. Wählen Sie TABELLE und anschließend einen Monat von JANUAR bis DEZEMBER aus. Geben Sie ein manuell ausgewähltes aerobes Schlammalter für jeden Monat (in Tagen) ein. Wenn SCHLAMMALTER MODUS auf MANUELL gesetzt ist, ist diese Eingabe obligatorisch. Um drastische Änderungen von Monat zu Monat zu verhindern, werden die Werte interpoliert, und das ausgewählte Schlammalter gilt für die Monatsmitte.
- 4. Wählen Sie PUMPZEITEN und anschließend einen Tag von MONTAG bis SONNTAG aus. Geben Sie die erforderlichen Pumpzeiten für jeden Tag (in Stunden) ein. Wenn die Pumpzeit auf 24 Stunden/Tag gesetzt wird, wird der Überschussschlammabzug nicht geändert. Wenn die Pumpzeit auf weniger als

6.

24 Stunden/Tag gesetzt wird, wird der Überschussschlammabzug mit 24 × 7 multipliziert und durch die Summe aller Sollwerte für eine Woche geteilt.

5. Wählen Sie EINGÄNGE und dann eine Option aus, um die aktuelle Steuerung für Durchfluss-Eingangsgrößen festzulegen.

Optionen	Beschreibung
MIN ZULAUF	Gibt die Mindestdurchflussmenge des Zulaufs auf Basis des Messsignals (in $\ensuremath{l}\xspaces)$ an.
MAX ZULAUF	Gibt die Höchstdurchflussmenge des Zulaufs auf Basis des Messsignals (in l/s) an.
MIN ÜSS ABZUG	Gibt die Mindestdurchflussmenge des Überschussschlamms auf Basis des Messsignals (in I/s) an.
MAX ÜSS ABZUG	Gibt die Höchstdurchflussmenge des Überschussschlamms auf Basis des Messsignals (in I/s) an.
Wählen Sie AUSG Stromkreis zur Übe	ÄNGE und anschließend eine der Optionen aus, um den ertragung an die Überschussschlammpumpe zu konfigurieren.

Optionen	Beschreibung
MIN ÜSS ABZUG	Gibt die Mindestpumpenmenge von Überschussschlamm auf Basis des Messsignals (in L/s) an.
MAX ÜSS ABZUG	Gibt die maximale Pumpenmenge von Überschussschlamm auf Basis des Messsignals (in L/s) an.
STELLZYKLUS	Umfasst die EIN- und AUS-Zeit der ÜSS-Pumpe. Die Stellzykluszeit wirkt sich auf die EIN/AUS-Dauer im Impuls/Pause-Modus aus. Beispiel: Bei einer Stellzykluszeit von 3 Stunden und einem Abzugswert von 60 % wird das Aktivierungsintervall der ÜSS-Pumpe auf 108 Minuten und das Deaktivierungsintervall auf 72 Minuten gesetzt. Kurze Zykluszeiten erhöhen die Wechselfrequenz.
MIN LAUFZEIT	Gibt die Mindest-EIN-Zeit der ÜSS-Pumpe (in Minuten) an. Stellen Sie die MIN LAUFZEIT ein, um Beschädigungen der ÜSS-Pumpe zu vermeiden. Die Pumpe läuft mindestens für die Dauer der hier eingestellten Zeitspanne. Der Wert muss ein Bruchteil der Stellzykluszeit sein.

7. Wählen Sie EINGANGSWERT PRÜFEN aus. Legen Sie bei der 2-Kanal-Version die Parameter für KANAL 1 und KANAL 2 fest. Wählen Sie eine Option.

Optionen	Beschreibung
Qinf_SIV	Gibt den Ersatzeingangswert für den Zufluss an, wenn Qinf nicht korrekt ist.
TS ML MODUS	Gibt die Ersatzstrategie an, wenn die TS-Messung im Belebtschlamm nicht korrekt ist: 1: Ersatzeingangswert (SIV), 3: Festgelegter Ersatzausgangswert (FOS), berechnet durch ERSATZWERT. ÜSS ABZUG, 5: TTS-Mittelwert: SIV berechnet als Durchschnittswert während letzter SRT.
TS ML HALTEZEIT	Gibt die Zeit des letzten korrekten Messwerts einer TS-Messung an. Der Messwert wird beibehalten, wenn der Ist-Messwert der TS- Messung nicht korrekt ist oder nicht im angegebenen Bereich liegt.
TS ML SIV	Gibt den äquivalenten Eingabewert an, wenn die TS-Messung im Belebtschlamm nicht korrekt ist.
TS ML MIN	Gibt den TS-Mindestmesswert im Belebtschlamm an, der vom Controller als korrekt angenommen wird.
TS ML MAX	Gibt den TS-Höchstmesswert im Belebtschlamm an, der vom Controller als korrekt angenommen wird.

Optionen	Beschreibung
TS SAS MODUS	Gibt die Ersatzstrategie an, wenn die TS-Messung im Belebtschlamm nicht korrekt ist: 1: Ersatzeingangswert (SIV), 3: Festgelegter Ersatzausgangswert (FOS), definiert durch ERSATZ. ÜSS ABZUG, 5: TTS-Mittelwert: SIV berechnet als Durchschnittswert während letzter SRT.
TS SAS HALTEZEIT	Gibt die Zeit des letzten korrekten Messwerts einer TS-Messung an. Der Messwert wird beibehalten, wenn der Ist-Messwert der TS- Messung nicht korrekt ist oder nicht im angegebenen Bereich liegt.
TS SAS SIV	Gibt den Ersatzeingabewert an, wenn die TS-Messung im Überschussschlamm nicht korrekt ist.
TS SAS MIN	Gibt den TS-Mindestmesswert im Überschussschlamm an, der vom Controller als korrekt angenommen wird.
TS SAS MAX	Gibt den TS-Höchstmesswert im Überschussschlamm an, der vom Controller als korrekt angenommen wird.

8. Wählen Sie MODBUS und anschließend eine der Optionen aus.

Optionen	Beschreibung
ADRESSE	Zeigt die Startadresse eines RTC-Moduls innerhalb des MODBUS- Netzwerks an (Standard 41). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
DATENREIHENFOLGE	Gibt die Registerreihenfolge in einem Doppelwort an (Standard NORMAL). Wenden Sie sich an den technischen Support, um diese Einstellung zu ändern.
Wählen Sie DATALOG	INTRVL (PROTOKOLLINTERVALL), um das Intervall

- **9.** Wählen Sie DATALOG INTRVL (PROTOKOLLINTERVALL), um das Intervall festzulegen, in dem Daten in der Protokolldatei gespeichert werden (Angabe in Minuten).
- **10.** SET DEFAULTS (AUF STANDARD SETZEN) stellt die Werkseinstellungen wieder her.

Hinweis: SET DEFAULTS (AUF STANDARD SEZTEN) löscht alle Benutzereinstellungen. Alle vom Benutzer eingestellten Parameter gehen verloren.

6.1 Warnungen

RTC-bezogene Unteransichten werden gelb angezeigt (Warnung). RTC kann zudem die Informationen der **GERÄTEWARNUNGEN** über die YAB117 Kommunikationskarte an die SPS übertragen.

Tabelle 17 und Tabelle 18 zeigen die RTC-Statusmeldungen.

Tabelle 17 Gerätewarnungen I

Gerätewarnungen I	Warnung	Beschreibung	Lösung
Bit 00	MODBUS-ADRESSE	Das RTC-Menü WERKS- KONFIG ist aufgerufen worden. Dadurch wurde die Modbus-Adresse des RTC im sc1000 gelöscht.	Rufen Sie das folgende Menü auf, und stellen Sie die korrekte MODBUS- Adresse ein. Gehen Sie zu: HAUPTMENÜ>RTC- MODULE/PROGNOSYS> RTC- MODULE>RTC> KONFIGURIEREN>MODBUS> ADRESSE.
Bit 01	SONDE SERVICE	Ein konfigurierter Sensor befindet sich im Servicezustand.	Rufen Sie das Menü TEST/MAINT für den ausgewählten Sensor auf, und beenden Sie den Modus SERVICE.
Bit 02	SENSOR FEHLT	Ein ausgewählter Sensor wurde vom sc1000- Netzwerk getrennt.	Verbinden Sie den Sensor erneut mit dem sc1000-Netzwerk.
Bit 03	SENSOR FEHLER	Ein ausgewählter Sensor zeigt einen Fehler an.	Betrachten Sie den Fehlermodus der ausgewählten Sensoren. Schlagen Sie Informationen zur Fehlerbehebung in der Sensordokumentation nach.
Bit 04	SENSOR EXCEPTION	Ein ausgewählter Sensor hat ein unbekanntes Signal an das sc1000- Netzwerk gesendet.	Wenden Sie sich an den technischen Support.
Bit 05	KANAL1 ERSATZSTRATEGIE	Kanal 1 des RTC-Moduls hat die Ausweichstrategie gestartet.	Überprüfen Sie die fehlenden Messwerte von Kanal 1 des RTC-Moduls.
Bit 06	KANAL2 ERSATZSTRATEGIE	Kanal 2 des RTC-Moduls hat die Ausweichstrategie gestartet.	Überprüfen Sie die fehlenden Messwerte von Kanal 2 des RTC-Moduls.

Tabelle 18 Gerätewarnungen II

Gerätewarnungen II	Warnung	Beschreibung	Lösung
Bit 02	GRENZWERT AKTIVIERT	Ein benutzerdefinierter Parameter hat einen Grenzwert für den RTC-Betrieb festgelegt.	Falls erforderlich, stellen Sie sicher, dass die einschränkenden Parameter ordnungsgemäß eingestellt sind. Nehmen Sie entsprechende Anpassungen vor.
Bit 03	"SENSOR WÄHLEN" PRÜFEN	RTC-Modul empfängt weniger Messwerte als erforderlich. Diese Warnung tritt in der Regel zusammen mit einer Warnung bezüglich eines fehlenden Sensors auf.	Stellen Sie sicher, dass im Menü WÄHLE SENSOR alle erforderlichen Geräte ausgewählt sind.

6.2 Fehler

Die RTC-bezogenen Fehler werden in Rot dargestellt. Die zugehörige Meldung wird im SC1000 Display angezeigt.

Die Fehlermeldungen können auch via SC1000 zur SPS übertragen werden. Tabelle 19 zeigt die RTC-Fehlermeldungen.

Tabelle 19 RTC-Fehlermeldungen

Gerätefehler	Fehler	Beschreibung	Lösung
Bit 00	RTC FEHLT	Es besteht keine Kommunikation zwischen RTC-Modul und RTC- Kommunikationskarte.	Versorgen Sie das RTC-Modul mit Strom. Überprüfen Sie das Verbindungskabel. Schalten Sie die Stromzufuhr zum sc1000 und zum RTC-Modul ab. Warten Sie, bis das System völlig spannungslos ist. Schalten Sie die Stromzufuhr zum sc1000 und zum RTC-Modul ein.
Bit 01	RTC CRC	Die Kommunikation zwischen RTC-Modul und RTC- Kommunikationskarte wurde abgebrochen.	Stellen Sie sicher, dass die +/Anschlüsse des Anschlusskabels zwischen RTC und RTC-Kommunikationskarte im sc1000 ordnungsgemäß installiert sind. Nehmen Sie die erforderlichen Änderungen vor.
Bit 02	KONFIG PRÜFEN	Die Sensorauswahl des RTC-Moduls wurde durch Entfernen oder durch Auswahl eines neuen sc1000- Controllers entfernt.	Gehen Sie zu: HAUPTMENÜ>RTCMODULE/PROGNOSYS>RTCMODULE> RTC>KONFIGURIEREN> WÄHLE SENSOR - Wählen Sie erneut den richtigen Sensor für den RTC, und bestätigen Sie diesen.
Bit 08	ZU VIELE SONDEN	Im Menü WÄHLE SENSOR wurden zu viele Sensoren ausgewählt.	Gehen Sie zum Menü WÄHLE SENSOR. Wählen Sie maximal 15 Sonden aus.
Bit 09	ZU VIELE MESSWERTE	Die im Menü WÄHLE SENSOR ausgewählten Sonden haben zu viele Messwerte, um von der RTC- Kommunikationskarte betrieben zu werden.	Gehen Sie zum Menü WÄHLE SENSOR. Wählen Sie die Anzahl von Sonden aus, die weniger als 15 Messwerte haben.
Bit 10	RTC STÖRUNG	Ein allgemeiner Lese-/Schreibfehler auf der CF-Karte, der höchstwahrscheinlich durch eine kurze Unterbrechung der Stromversorgung verursacht wurde.	Quittieren Sie Fehler. Wenn die Meldung häufiger angezeigt wird, beheben Sie die Ursache der Stromunterbrechung. Wenden Sie sich bei Bedarf an den technischen Support.
Bit 03	SYNTAX ERROR		
Bit 04	FORMEL ZU LANG		
Bit 05	ARGUMENT	Fehler in der Datei PROGNOSYS *.bin.	Aktualisieren Sie die Version der PROGNOSYS-Dateien. Wenden Sie sich an den technischen Support.
Bit 06	LOGIC FUNCTION		
Bit 07	GRENZW. FUNKTION		

6.3 Wartungseinstellungen

- 1. Rufen Sie das MAIN MENU (HAUPTMENÜ) auf.
- Wählen Sie RTC MODULES / PROGNOSYS > RTC MODULE > RTC > MAINTENANCE (RTC-MODULE / PROGNOSYS > RTC-MODUL > RTC > WARTUNG) aus.
- 3. Wählen Sie RTC DATEN und anschließend eine der Optionen aus.

Optionen	Beschreibung	
RTC MESSWERTE	Zeigt maximal fünf Messwerte an. Verwenden Sie die Aufwärts- und Abwärts-Pfeiltasten, um mehr Werte auszuwählen.	
RTC STELLGRÖSS	Zeigt maximal fünf Stellgrößen an. Verwenden Sie die Aufwärts- und Abwärts-Pfeiltasten, um mehr Größen auszuwählen.	
Wählen Sie DIAC/TEST und enschließend eine der Ontienen eus		

4. Wählen Sie DIAG/TEST und anschließend eine der Optionen aus.

Optionen	Beschreibung
EEPROM	Zeigt den Status der Kommunikationskarten-Hardware an.
RTC KOMM TO	Zeigt die Zeit an, die seit der letzten erfolgreichen Kommunikation zwischen sc1000 und RTC vergangen ist.
RTC CRC	Zeit die Kommunikationsprüfsumme an.
MODBUS-ADRESSE	Zeigt die Adresse an (Standard 41).

- **5.** Wählen Sie ORT aus, um zur einfacheren Identifizierung des RTC-Moduls einen Ortsnamen festzulegen.
- 6. Wählen Sie SOFTWARE VERSION aus, um die Versionsnummer für Servicezwecke anzuzeigen.
- 7. Wählen Sie RTC MODE aus, um den im RTC-Modul eingestellten Modus anzuzeigen.
- 8. Wählen Sie RTC VERSION aus, um die Software-Version des RTC-Moduls anzuzeigen.

HACH COMPANY World Headquarters

P.O. Box 389, Loveland, CO 80539-0389 U.S.A. Tel. (970) 669-3050 (800) 227-4224 (U.S.A. only) Fax (970) 669-2932 orders@hach.com www.hach.com

HACH LANGE GMBH

Willstätterstraße 11 D-40549 Düsseldorf, Germany Tel. +49 (0) 2 11 52 88-320 Fax +49 (0) 2 11 52 88-210 info-de@hach.com www.de.hach.com

HACH LANGE Sàrl 6, route de Compois 1222 Vésenaz SWITZERLAND Tel. +41 22 594 6400 Fax +41 22 594 6499

© Hach Company/Hach Lange GmbH, 2016. Alle Rechte vorbehalten. Gedruckt in Deutschland.