

Quick Reference Guide

QuenchGone21TM Specialty Test Kit

Product #: QG21S-50 / QG21St-100

NOTE: Please refer to <u>Test</u> <u>Kit Instructions</u> during first product use and for additional details including legal statements.

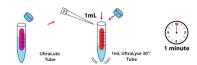
Step 1 - UltraCheck™ 1 Calibration

Perform one UltraCheck 1 calibration per day or per each set of samples analyzed.

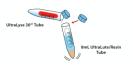
NOTE: If RLU $_{ATP1} \le 50,000$ using a PhotonMaster or Lumitester C-110, rehydrate a new bottle of Luminase $^{\text{NL}}$ for maximum sensitivity.

Step 2 − Total ATP (tATPTM) Analysis (1 per sample)

Included in QG21STM and QG21St test kits.


2.1 - PRE-DILUTION

Pre-dilute sample.


2.2 - EXTRACTION

Add pre-diluted sample to extract ATP.

2.3 - DILUTION

Dilute out interferences.

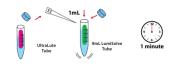
2.4 - ASSAY

Measure ATP concentration.

NOTE: If RLU $_{\rm LATP}\!\leq\!10$ using a PhotonMaster or Lumitester C-110, you are below the low- detection limit.

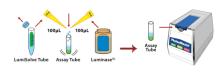
NOTE: If RLU_{tATP} ≤ 50 using a PhotonMaster or Lumitester C-110, consider accounting for background (RLU_{bg}). See Test Kit Instructions for guidance.

Total ATP (tATP) Calculation:


$$tATP(pg|ATP/mL) = \frac{RLU_{tATP}}{RLU_{ATP1}} \times 100,000(pg|ATP/mL)$$

Step 3 − Dissolved ATP (dATPTM) Analysis (1 per sample)

Included in QG21S test kit only.


3.1 - DILUTION

Add pre-diluted sample to recover ATP.

3.2 - ASSAY

Measure ATP concentration.

NOTE: If $RLU_{dATP} \le 10$ using a PhotonMaster or Lumitester C-110, you are below the low-detection limit.

NOTE: If $RLU_{dATP} \le 50$ using a PhotonMaster or Lumitester C-110, considering accounting for background (RLU_{bg}). See Test Kit Instructions for guidance.

Dissolved ATP (dATP) Calculation:

$$dATP (pg ATP/mL) = \frac{RLU_{dATP}}{RLU_{ATP1}} \times 100,000 (pg ATP/mL)$$

Calculations:

NOTE: When using the QG21S tATP – only kit, skip final calculations and interpret tATP results as you would cATP results using the Interpretation Guidelines.

NOTE: If the results show for a given sample that dATP (ng/mL) > tATP (ng/mL), report cATPTM = 0 and BSITM = 100%

Cellular ATP (cATP) Calculation:

$$cATP\left(\frac{pg\ ATP}{mL}\right) = tATP\left(pg\ ATP\ / mL\right) - dATP\left(pg\ ATP\ / mL\right)$$

Microbial Equivalent (ME/mL) Calculation:

$$cATP\left(\frac{ME}{mL}\right) = cATP\left(pg\ ATP/mL\right) \times \frac{1\ ME}{0.001\ pg\ ATP}$$

Biomass Stress Index (BSI) Calculation:

$$BSI (\%) = \frac{dATP (pg ATP / mL)}{tATP (pg ATP / mL)} \times 100\%$$

NOTE: 1 ME (Microbial Equivalent) assumes 0.001 pg (1 fg) ATP per cell.

Interpretations Guidelines

Application	Good Control (pg cATP/mL)	Preventative Action (pg cATP/mL)	Corrective Action (pg cATP/mL)
Product Quality Control (Paint, Coating, Slurries)	< 100	100 to 1,000	> 1,000

For BSI (when applicable), it can generally be interpreted that good control is achieved at levels of 75% or above. Preventive action should be taken at levels between 50% and 75%, and corrective action should be taken at levels below 50%.

NOTE: Interpretation Guidelines provided for general guidance. For best results, establish your own baseline and control levels.